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Introduction 

The subject research was performed at the University of Florida between December 2005 and 

December 2008. The research was performed to support the ability to detect landmines in an 

automated fashion using ground-penetrating radar (GPR) array sensors employed in systems 

being studied by NVESD. The work was concerned with discovering and evaluating i) different 

types of features that, when extracted from signals associated with GPR signals captured over 

regions of earth, can help one identify the presence or absence of landmines and landmine-like 

objects; ii) algorithms and techniques that can employ these features to distinguish between 

landmines and non-mines; and iii) fuse the results of multiple discriminators to yield improved 

discrimination performance. 

This document briefly reviews results of this research in each of these areas. Referenced papers 

are attached as appendices. 

Features 

During the period of performance, we investigated a wide variety of features arising from  GPR 

signals, however, those features can be broken into several broad categories: 

1. Spectral features, characterizing properties of the energy frequency spectrum of the radar 

signal return. 

2. Spatial edge features, characterizing the locations and local spatial organizations of 

instantaneous changes in the radar signal return. 



3. Spatial region features, characterizing the locations and extents of spatially contiguous 

radar returns having similar properties. 

In each of the following subsection, we briefly describe the results of research associated with 

each of these types of features. 

Spectral Features 

Within this first category of features, we worked together with Dominic Ho of the University of 

Missouri to identify spectral properties of radar signals that were suggestive of the presence of 

landmines. The GPR signals we process contain a wide variety of clutter objects such as rocks 

and roots, and they also display great soil heterogeneity. We identified frequency domain 

spectral features that improve the detection of weak-scattering plastic mines and to reduce the 

number of false alarms resulting from clutter in comparison to earlier algorithms. The motivation 

for this approach arose from the fact that landmine targets and clutter objects have different 

shapes and/or composition that yield different energy density spectrum (EDS) that may be 

exploited for discrimination. Although the same information is present in time-domain data, the 

frequency domain lets us remove the phase component and can reveal better spatial 

characteristics and  often achieve greater robustness. The EDS (Ho, et al., 2008) is essentially a 

spatially averaged energy signature extracted from a normalized and signal-smoothed region 

surrounding a point to be extracted. The consistency of the landmine spectral characteristics was 

confirmed by data collected at several geographically diverse sites having different soil 

conditions and by the data produced from two completely different radar systems. Experimental 

results corroborated the effectiveness of the spectral features in improving landmine/clutter 

discrimination and the robustness of the EDS estimation method. 

Spatial Edge Features 

A variety if different spatial edge features were investigated during the course of this research. 

The first edge features were exploited in a Hidden Markov Model (HMM) detector (Wilson, et 

al., 2007). The observations used by the HMM were positive and negative diagonal and 

antidiagonal edges found in the second derivative of the B-scans of the radar data. 

Work reported by Frigui and Gader (Frigui, et al., 2006) describes a set of edge histogram 

features motivated by the MPEG compression standard, and the edge histogram descriptor which 

collects together a set of spatially organized edge features. These features are created by finding 

the edge orientation at each pixel to be inspected by applying four edge masks (horizontal, 

vertical, diagonal, antidiagonal) and finding the greatest of the responses that exceeds a required 

threshold. If the threshold is not exceeded, an anisotropic edge is reported. A histogram over 

these five responses is created for a block, or collection of spatially neighboring pixels.  The 

EHD collects together the histograms over a number of spatially neighboring blocks to 

characterize the edges associated with a region of earth corresponding to a collection of 

neighboring B-scans. 



Spatial Region Features 

In addition to the edge features, a number of spatial region features of the time-domain GPR 

signal have been employed in attempting to identify landmines. The features found to be of 

greatest utility (Wilson, et al., 2007) can be roughly comprise a number of energy region 

characteristics. After finding connected components of high energy (as identified by exceeding 

the Otsu threshold in depth-bin whitened data), we calculate the following region properties: 

eccentricity, solidity, area-to-filled-area ratio, compactness. 

Discrimination Algorithms 

The features identified in the program were employed in several different discrimination 

algorithms to attempt to yield mine confidence values giving high detection probability with 

correspondingly low false alarm rates. This section briefly describes the algorithms developed 

and employed in this investigation. 

Hidden Markov Model 

The HMM algorithm (Wilson, et al., 2007) uses observation sequences that are the diagonal and 

antidiagonal edge features discussed above. An HMM begins execution in what is referred to as 

its initial state.  Thenceforth, it determines the most likely state given the previous state and the 

current observation. The HMM is trained using data that identifies those points in the 

observation sequence associated with the presence of landmines. To identify the existence of a 

mine, one finds the likelihood of being in a landmine state at a given time and report this as the 

mine confidence value.  

Feed-forward Ordered-Weighted Average 

The Feed-forward Ordered-Weighted Average (FOWA) algorithm employs depth-bin specific 

spatial region features (those identified above) as input to a multilayer perceptron having an 

input layer whose feature values are bin-sorted values, thus, their ordering in depth is lost, 

however, their ordering in the feature space is preserved. In addition to the typical MLP training, 

we have modified the system to train in such a way as to maximize the area under the receiver-

operating characteristics (ROC) curve (Lee, et al., 2007). 

Edge Histogram Detector 

The Edge Histogram Detector (Frigui, et al., 2006) clusters the EHD features identified above 

and using a possibilistic K-nearest neighbor approach to identify the most likely class associated 

with a region of earth under inspection. 

Spectral Confidence Feature 

A spectral confidence feature can be formed by calculating the EDS of a region of earth under 

inspection, then applying a matched filter developed by analysis of weak-scattering low-metal 



landmines in order to attempt to associate high confidence values with these difficult-to-find 

mines (Ho, et al., 2008). 

Summary of Algorithms 

These algorithms were employed over a wide range of targets in diverse environments with both 

naturally-occurring and emplaced clutter objects to identify their performance characteristics. It 

was found that they provide contrasting benefits in different environments with different target 

sets. 

Fusion of Decision Statistics 

As noted above, each of the discrimination algorithms exhibits differing characteristics with 

respect to their performance on particular landmine classes and in specific environments. We 

studied and developed methods to fuse their results for improved discrimination performance. 

Choquet Measure Fusion 

One fusion method we studied was to use the Choquet integral of differing detector outputs to 

yield an improved result. One of the methods that yielded good results was to use minimum 

classification error training (Mendez-Vazquez, et al., 2008). 

Rank-based Fusion 

Another method employed in this work was to use rank-based fusion, which normalizes 

algorithm decision statistics by their rank in a training set, then combines linearly-weighted ranks 

to yield a fusion result (Frigui, et al., 2009). 

Summary 

A variety of features, discriminators, and fusion methods for detecting the presence of landmines 

in GPR signals with high probability and low false alarm rates were studied and reported on. In 

addition to publishing the results of our work, we presented these results at Algorithm Working 

Group Meetings, conveyed algorithms and methods to military contractors, and communicated 

methods and results to sponsor representatives and other interested parties. We have attached 

relevant documents as Appendices 
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a b s t r a c t

Many algorithms have been proposed for detecting anti-tank landmines and discriminating between
mines and clutter objects using data generated by a ground penetrating radar (GPR) sensor. Our extensive
testing of some of these algorithms has indicated that their performances are strongly dependent upon a
variety of factors that are correlated with geographical and environmental conditions. It is typically the
case that one algorithm may perform well in one setting and not so well in another. Thus, fusion methods
that take advantage of the stronger algorithms for a given setting without suffering from the effects of
weaker algorithms in the same setting are needed to improve the robustness of the detection system.
In this paper, we discuss, test, and compare seven different fusion methods: Bayesian, distance-based,
Dempster–Shafer, Borda count, decision template, Choquet integral, and context-dependent fusion. We
present the results of a cross validation experiment that uses a diverse data set together with results
of eight detection and discrimination algorithms. These algorithms are the top ranked algorithms after
extensive testing. The data set was acquired from multiple collections from four outdoor sites at different
locations using the NIITEK GPR system. This collection covers over 41,807 m2 of ground and includes
1593 anti-tank mine encounters.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

It is estimated that over 100 million landmines are buried in
over 80 countries and that 26,000 people a year are killed or
maimed by a landmine [1]. Detection and removal of landmines
is a significant research problem [2–5]. The research problem for
data analysis is to determine how reliably landmines can be de-
tected and distinguished from other subterranean objects using
sensor data. Difficulties arise from the variability of landmine
types, soil and weather conditions, terrains, and so on. Traditional
fielded approaches use metal detectors. Unfortunately, many land-
mines contain little metal. Ground penetrating radar (GPR) offers
the promise of detecting landmines with little metal. Although sev-
eral approaches to detecting landmines and discriminating land-
mines from clutter using GPR have been investigated [6–15],
acceptable results have been elusive [16–18]. Although systems of-
ten achieve high detection rates, it is difficult to achieve the re-
quired low false alarm rates. Moreover, algorithm performance
can vary significantly. Therefore, fusion methods that take advan-
tage of the strengths of individual algorithms, overcome their

weaknesses, and achieve a higher accuracy than any individual
algorithm are needed.

Multi-classifier, multi-algorithm, and multi-sensor fusion are
critical components in landmine detection. Buried objects interact
with the soil and any potential covering of the soil (such as a road
surface). Physical properties of soil can vary significantly in small
areas. For example, soil can be a heterogenous mixture of soil types
layered with a thin layer of top soil covering clay or asphalt cover-
ing gravel covering soil. Soil can have significantly varying density
in a small region [19]. Roots of vegetation hold water. Rain or snow
lead to variable moisture in the soil. Minerals can significantly af-
fect the radar propagation through soil. In addition, the mine case
can interact with different soils in different ways. For example,
plastic casings have very similar electrical properties as soils under
some conditions. Wood casings can absorb moisture. All these fac-
tors can have significant effects on GPR data and are generally un-
known to an autonomous algorithm due to the wide variability
over a small range. The implication for autonomous detection is
that different types of algorithms are useful for different condi-
tions. These different algorithms must use different signal condi-
tioning, or Preprocessing, and feature extraction.

The objective of this paper is to present results of evaluating
eight different anti-tank landmine discrimination algorithms and

1566-2535/$ - see front matter � 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.inffus.2009.10.001
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the fusion of these algorithms using seven different methods. The
generality, computational cost, and interpretability of the fusion
methods is analyzed using a cross validation experiment that uses
a diverse data set acquired from four outdoor test sites at different
geographic locations. This collection covers over 41,807 m2 of
ground and includes 1593 anti-tank mine encounters. This collec-
tion contains multiple sub-collections taken at different times of
the year and at very different locations in the United States as well
as in Europe. Therefore, the experimental results, although not
completely independent of mine type, soil conditions, etc., are
probably at least as independent as any published results.

Section 2 describes the GPR data, Preprocessing, and prescreen-
ing. Section 3 outlines the distinct anti-tank landmine discrimina-
tion algorithms. Section 4 discusses the seven methods for fusing
discrimination algorithms. Experimental results and analyses are
presented in Section 5. Section 6 concludes.

2. Data preprocessing and prescreening

In this section, we briefly describe the GPR data, Preprocessing
steps, and Prescreening. More detailed descriptions are in [20,21].

2.1. GPR data

The input data consist of a sequence of raw GPR measurements
collected by a vehicle-mounted GPR array [22] (see Fig. 1a). The
GPR collects 24 channels of data. Adjacent channels are spaced
approximately 5 cm apart in the cross-track direction, and se-
quences (or scans) are taken at approximately 5 cm down-track
intervals. The system uses an antenna that generates a wide-band
pulse from 200 MHz to 7 GHz. Each A-scan, that is, the measured
waveform collected in one channel at one down-track position,
contains 416 GPR time samples, each corresponding to roughly
8 ps. We often refer to the time index as depth although, since
the radar wave travels through different media, this index does
not represent a uniform sampling of depth. Thus, we model GPR in-
put data as a three-dimensional matrix of sample values,
Sðz; x; yÞ; z ¼ 1; . . . ;416; x ¼ 1; . . . ;24; y ¼ 1; . . . ;NS, where NS is the
total number of collected scans, and the indices z, x, and y repre-
sent depth, cross-track position, and down-track positions respec-
tively. GPR input data is illustrated in Fig. 1b.

Fig. 2 displays down-track B-scans (sequences of A-scans from a
single channel) and cross-track B-scans (sequences of A-scans from
a single scan). The surveyed object position is highlighted in each
figure.

2.2. Data preprocessing

Preprocessing is an important step to enhance the mine signa-
tures. The algorithm first identifies the ground bounce location as
the global maximum of the signal and aligns the A-scans using
these maxima. This alignment is necessary because the system
cannot maintain the radar antenna at a fixed distance above the
ground. The early time samples of each signal, up to few samples
beyond the ground bounce are discarded. The remaining samples
are divided into N depth bins which will be processed indepen-
dently. The reason for this segmentation is to compensate for the
high contrast between responses from deeply buried and shallow
anomalies.

2.3. Anomaly detection

Our algorithm applies a Prescreener to reduce the volume of
GPR data to be inspected. The Prescreener identifies distinct alarm
locations in the data. It was designed to provide a high probability
of detection so that more computationally intensive discrimination
processing can be performed. False alarms are alarms that do not
correspond to mines. The objective of the feature-based detection
algorithms and their fusion is to distinguish between Prescreener
alarms corresponding to landmines from false alarms. We use
the Duke University NUKEv6 Prescreener, a variant of the least
mean squares (LMS) Prescreener [20]. A version of this Prescreener
was implemented in real-time in the system in Fig. 1. This Prescre-
ener is applied to the energy at each depth bin, and assigns a con-
fidence value to each point in the cross-track, down-track plane
based on its contrast with a neighboring region. The cross-track
xs, and down-track ys positions of the centers of algorithmically
determined mine-like components are reported as alarm positions
for further processing.

3. Discrimination algorithms

Generally, automated landmine discrimination algorithms
consist of three phases: Preprocessing, feature extraction, and con-
fidence assignment. Preprocessing performs tasks such as normal-
izing data, correcting for variations in height and speed, and
removing stationary effects due to the system response. Previous
methods include wavelets and Kalman filters [23,24], subspace
methods and polynomial matching [25], and subtracting optimally
shifted and scaled reference vectors [26]. Feature extraction
reduces the Preprocessed data to a lower-dimensional, salient set
of values that represent the data. The principal component

Fig. 1. GPR data collection: (a) NIITEK vehicle-mounted GPR system; and (b) an example of GPR scans.
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transform is a common feature extraction tool [27], as are wavelets
[23], image processing based differentiation [6], and Hough and
Radon transforms [4]. Confidence assignment can be performed
using methods such as Bayesian [4], hidden Markov Models
[6,28], fuzzy logic [5], rules and order statistics [21], neural net-
works, or nearest neighbor classifiers [7].

Here we consider seven specific algorithms of distinct character.
These algorithms have performed well in extensive field testing,
and are being considered for real-time implementation in hand-
held and vehicle-mounted GPR systems. These algorithms are
highlighted in the following sections.

3.1. HMM detector

The HMM algorithm [6,28] treats the down-track dimension as
the time variable and produces a mine confidence at positions,
(x,y), on the surface being traversed. A sequence of observation
vectors is produced for each down-track point and depth. These
observation vectors encode the degree to which edges occur in
the diagonal and anti-diagonal directions. In particular, for every
point ðxs; ysÞ, the strengths for the positive/negative diagonal/
anti-diagonal edges is computed. The observation vector at a point
ðxs; ysÞ consists of a set of four features that encode the maximum
edge magnitude over multiple depth values around ðxs; ysÞ. The
HMM algorithm has a background and a mine model. Each model
produces a probability. The probability produced by the mine
(background) model is an estimate of the probability of the obser-
vation sequence given that there is a mine (background) present.
The log of the ratio of the probabilities is the confidence.

3.2. EHD detector

This algorithm uses translation invariant features based on the
edge histogram descriptor (EHD) of the 3-D GPR signatures, and a
possibilistic K-Nearest Neighbors (K-NN) rule for confidence
assignment [29]. The EHD captures the signature’s texture. Specif-
ically, each 3-D signature is divided into sub-signatures, and the lo-
cal edge distribution for each sub-signature is represented by a
histogram. To generate the histogram, local edges are categorized
into five types: vertical, horizontal, diagonal (45� rising), anti-diag-
onal (45� falling), and non-edges. A set of alarms with known
ground truth is used to train the decision-making process. These
labeled alarms are clustered to identify a small number of repre-
sentatives that capture signature variations due to differing envi-
ronmental conditions and mine types, etc.

3.3. SPECT detector

This detector aims at capturing the characteristics of a target
in the frequency domain using the energy density spectrum
(EDS). It extracts the spectral correlation feature (SCF) which is
computed using similarity to mine prototypes [30]. The EDS is
estimated using three main steps: Preprocessing, whitening, and
averaging. After alignment, Preprocessing removes the data above
and near the ground surface to avoid an EDS that is dominated by
the ground response. The whitening step equalizes the back-
ground spectrum so the estimated EDS reflects the actual spectral
characteristics of an alarm. Averaging reduces the variance in the
EDS.

Fig. 2. NIITEK Radar down-track and cross-track B-scans pairs for three alarms.
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3.4. GEOM detector

This algorithm computes geometric features in multiple, whit-
ened depth bins which are two-dimensional images with cross-
track and down-track axes. The features are inputs to a Feed-for-
ward Ordered-Weighted-Average (FOWA) network [31] that is
trained to maximize the area under the Receiver Operating Charac-
teristic (ROC) curve [32]. The features used are compactness,
eccentricity, solidity, and area to filled area ratio. These features
are based on the observation that the whitened energy for mines
often has a compact, solid, and circular shape whereas non-mine-
like objects produce an irregular shape.

3.5. TFCM detector

The Texture Feature Classification Method (TFCM) detector [33]
is a three-dimensional extension of the algorithm by Horng [34].
The algorithm transforms a block of GPR data into a block of inte-
ger codes. The code at each point in a block is generated by consid-
ering several differences in GPR intensity values over a 3� 3� 3
window centered at the point. The differences are thresholded pro-
ducing a string of zeros and ones, which are then mapped to the
integer codes, the details of which are described in the references.
Statistical textures features, such as entropy, variance, and co-
occurrence, are then computed on the blocks of codes and trans-
formed into feature vectors. Relevance Vector Machines (RVMs)
use the features to produce a confidence that an alarm represents
a landmine.

3.6. GMRF detector

The Gaussian-Markov Random Field (GMRF) detector [35] is
based on a transmission line model of the time-domain GPR re-
sponse to the subsurface. The model represents the GPR as a se-
quence of dielectric discontinuities. Each discontinuity is
parameterized by a location and a gain parameter. These parame-
ters are characterized statistically using a Gaussian-Markov Ran-
dom Field. A generalized likelihood ratio test is then used to
assign a confidence that an alarm represents an anti-tank landmine.

3.7. GFIT detector

The Gaussian Fit (GFIT) detector [36] calculates the parameters
of a Gaussian pulse which best fits the spatial energy distribution
of target responses to GPR. The output features are the goodness
of fit, the pulse width, and pulse gain. More specifically, the spatial
shape of the summed energy from a cross-track scan is compared
to the shape of a Gaussian pulse. If x represents position in down-
track scans, and E represents the energy, we find the r; x0; a to
minimize the root mean square error (RMSE) between EðxÞ and
f ðxÞ ¼ a � expð�ðx0 � xÞ=r2Þ. The output features are thenffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sumxðEðxÞ � f ðxÞÞ
p

; r; x0, and a.
The above discrimination algorithms were developed by

researchers at the Universities of Missouri, Louisville, Florida, as
well as Duke University. They are independently developed and
have many differences in GPR Preprocessing and normalization,
feature extraction, and classification methodologies. Since the
descriptions of almost all of these algorithms are contained in de-
tail in the references, and take many pages to describe in detail,
they cannot be described in detail here. However, in feature extrac-
tion alone one can see many differences. The anomaly detector
simply looks for locations that are different from the background.
It uses masks oriented in the C-scan direction. The HMM detector
looks at variable length sequences of edges. The EHD detector looks
at fixed length representations of edges. All three previous algo-
rithms used the down-track and cross-track time-domain GPR.

The SPECT detector looks at features in the frequency domain.
The GEOM detector calculates feature based on geometric shape
in C-scans. The TFCM detector looks for texture features in three-
dimensional blocks of time domain data, GMRF, and the GFIT
detector looks at energy in the cross-track direction. Thus, in the
feature extraction process alone, one can see that these algorithms
vary widely in the focus and processing.

Despite all of the above differences, one cannot assume that
these algorithms are statistically independent. In fact, we know
that some of them could be highly correlated. For instance, both
the EHD and the HMM detectors could assign low confidence val-
ues to alarms with weak edges. The fusion algorithms that we are
considering (described in the next section) address the indepen-
dence issue to various degrees. For instance, the Bayes fusion and
the Mahalanobis distance fusion do not make the independence
assumption and use full covariance matrices to normalize and dec-
orrelate the detectors outputs. Similarly, the Choquet integral con-
siders all possible subsets of detectors and promotes sparsity. Thus,
it will tend to identify the smallest subset of uncorrelated detec-
tors. Other fusion methods do not consider the detectors depen-
dency at all. One of the goals of this experiment is to compare
these fusion methods with respect to this dependency issue.

4. Combination of multiple classifiers

4.1. Background

For complex detection and classification problems involving
data with large intra-class variations and noisy inputs, perfect
solutions are difficult to achieve, and no single source of informa-
tion can provide a satisfactory solution. As a result, combination of
multiple classifiers (or multiple experts) is playing an increasing
role in solving these complex pattern recognition problems, and
has proven to be viable alternative to using a single classifier. Clas-
sifier combination is mostly heuristic and is based on the idea that
classifiers with different methodologies or different features can
have complementary information. Thus, if these classifiers cooper-
ate, group decisions should be able to take advantages of the
strengths of the individual classifiers, overcome their weaknesses,
and achieve a higher accuracy than any individual’s.

Methods for combining multiple classifiers can be classified into
two main categories: classifier selection and classifier fusion. Clas-
sifier selection methods assume that the classifiers are comple-
mentary, and that their expertise varies according to the
different areas of the feature space. For a given test sample, these
methods attempt to predict which classifiers are more likely to
be correct. Some of these methods consider the output of only
one classifier to make the final decision [37]. Others, combine the
output of multiple ‘‘local expert” classifiers [38]. Classifier fusion
methods assume that the classifiers are competitive and are
equally experienced over the entire feature space. For a given test
sample, the individual classifiers are applied in parallel, and their
outputs are combined in some manner to take a group decision.

Over the past few years, a variety of schemes have been pro-
posed for combining multiple classifiers. The most representative
approaches include majority vote [39], Borda count [40], average
[41], weighted average [42], Bayesian [43], and probabilistic [44].
Most of the above approaches assume that the classifier decisions
are independent. However, in practice, the outputs of multiple
classifiers are usually highly correlated. Therefore, in addition to
assigning fusion weights to the individual classifiers, it is desirable
to assign weights to subsets of classifiers to take into account the
interaction between them. Fusion methods based on the fuzzy
integral [45,46] and Dempster–Shafer theory [47,48] have this
desirable property.
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Another way to categorize classifier combination methods is
based on the way they select or assign weights to the individual
classifiers. Some methods are global and assign a degree of worthi-
ness, that is averaged over the entire training data, to each classi-
fier. Other methods are local and adapt the classifiers’ worthiness
to different data subspaces. Intuitively, the use of data-dependent
weights, when learned properly, provides higher classification
accuracy. This approach requires partitioning the input samples
into regions during the training phase. The partition can be defined
from the space of individual classifier decisions [49], according to
which classifiers agree with each other [40], or by features of the
input space [50,51]. Then, the best classifier for each region is iden-
tified and is designated as the expert for this region [52]. Con-
versely, the partitioning can be defined such that each classifier
is an expert in one region [37]. This approach may be more effi-
cient, however, its implementation is not trivial. In the classifica-
tion phase, the region of an unknown sample is identified, and
the output of the classifier responsible for this region is used to
make the final decision. Data partition and classifier selection
could also be made dynamic during the testing phase [53,54]. In
this case, the accuracy of each classifier (with respect to the train-
ing samples) is estimated in local regions of the feature space in
the vicinity of the test sample. The most accurate classifier is se-
lected to classify the test sample.

4.2. Notation

Let D1;D2; . . . ;DL denote the L algorithms to be fused, and let
w1; . . . ;wC denote the C classes. Each algorithm, Di, extracts a set
of features, Fi, and assigns a confidence value yi to each of the C
classes. In the proposed landmine application, we have L ¼ 8,
where D1;D2; . . . ;D8 correspond to the prescreener (NUKEv6),
EHD, HMM, Spect, Geom, TFCM, GFIT, and GMRF algorithms
respectively. We also have C ¼ 2 where w1 denotes the mine class
and w2 denotes the clutter class. We note that the prescreener is
not a feature-based algorithm, and thus, it does not generate a
set of features (i.e., no F1).

4.3. Bayesian-based fusion

Bayesian data fusion [55] is based on Bayesian decision theory
which is a fundamental statistical approach to the problem of pat-
tern classification. This approach is based on quantifying the trade-
offs between various classification decisions using probability and
the costs that accompany such decisions. Bayesian data fusion has
been studied extensively in the literature (e.g. [55–57]). This ap-
proach has the advantage of being able to incorporate a priori
knowledge about the likelihood of the hypothesis being tested,
and when empirical data are not available, it is possible to use sub-
jective estimates of the prior probabilities. Moreover, from a statis-
tical point of view, the use of Bayes rule should provide the optimal
decision. Unfortunately, the proper use of Bayes requires the joint
probability density functions to be known. This information is usu-
ally not available and may be difficult to estimate from the data.
Other disadvantages of the Bayesian approach include complexi-
ties when dealing with multiple potential hypotheses and multiple
conditionally dependent events, and the inability to account for
general uncertainty [56,57]. Thus, Bayesian data fusion is best sui-
ted to applications where prior parameters are available, there is
no need to represent ignorance, and where conditional depen-
dency can be easily modeled through probabilistic representation.

Bayesian fusion has been applied to target identification[58],
image analysis [59], and many other applications [55]. It has also
been applied to the problem of anti-personnel landmine detection
[60,61], and the results were compared to other fusion methods. In

[60], only synthetic data were used, and in [61] a very small data
set was used. Thus, the results were not conclusive.

Let v represents the output of all L algorithms to be fused, i.e.,
v ¼ ½y1; y2; . . . ; yL�. Within the Bayesian framework, v is considered
a random variable with a distribution that depends on the state of
nature. Using Bayes formula, we first compute the posterior prob-
ability using

pðwijvÞ ¼
pðvjwiÞpðwiÞ

pðvÞ : ð1Þ

Then, v is assigned to the class with maximum posterior prob-
ability, i.e.,

v 2 wj if pðwjjvÞ ¼ max
i¼1���K

pðwijvÞ: ð2Þ

In (1), pðwiÞ is the prior probability of class i and pðvjwiÞ is the
class conditional density. The prior pðwiÞ is usually provided by
an expert, or estimated using the relative proportions of training
data from each class. Similarly, pðvjwiÞ can be estimated from the
training data.

Our data consist of multiple subsets of mines/clutter signatures
collected with the same hardware at different times and under dif-
ferent conditions. Moreover, many mines are of the same type and/
or buried at the same depth. Thus, it is reasonable to assume that
the detectors will assign confidence values that are consistent with
these conditions, and that the confidence values of all detectors
tend to form clusters in the confidence space. Consequently, we
model pðvjwiÞ by a mixture of M Gaussian distributions, i.e.,

pðvjwiÞ ¼
XM

k¼1

pðvjwkiÞPðwkiÞ; ð3Þ

where each pðvjwkiÞ is a multi-variate Gaussian. In general, we have
Pðw2Þ � Pðw1Þ. However, the risk associated with missing a mine is
much higher than the risk associated with detecting a false alarm.
Since we cannot quantify the risks, and the priors can change from
one site to another and depend on the settings of the prescreener,
we simply assume that these two factors cancel each other, and
let Pðw1Þ ¼ Pðw2Þ.

In our experiments, we let v include the output of the seven
detection algorithms and the prescreener, i.e., v ¼ ½y1; y2; . . . ; y8�.
The means lki, covariance matrices Rki, number of components
M, and the mixing coefficients PðwkiÞ for the M components of class
i are learned from the training data using the competitive agglom-
eration clustering algorithm [62]. Instead of using (2) to label the
test data, we assign a soft confidence value using

ConfB ¼ Pðw1jvÞ: ð4Þ

4.4. Mahalanobis distance-based fusion

The Mahalanobis distance-based approach (MD) is a variation of
the Bayesian approach [63]. It models the distribution of v in each
class i, by a multi-variate Gaussian and therefore represents the
eccentricity of the mine and clutter distributions. The Mahalanobis
distances to the mine and clutter classes of a test alarm v are com-
puted by

DX ¼ ðv � lXÞ
TR�1

X ðv � lXÞ; ð5Þ

where X ¼ M and X ¼ C denote the mine and clutter classes, respec-
tively. The fusion confidence is the weighted difference between the
distances:

ConfMD ¼ �DM þ aDC : ð6Þ

The value a in (6) provides a means of controlling the contribu-
tion of the distance to the clutter class to the fusion confidence. It is
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computed from the training data to minimize the average false
alarm rate over the range of probability of detection from 92% to
96% [63]. This range was chosen since our long term goal is in
probabilities of detection around 95% and this interval contains
that range. Based on our experience the mines with confidence
so low that they are within the last 4% of the mines detected tend
to be lucky detects, i.e. they do not really produce useful signatures
and therefore should not be included in the optimization. This is
why the range is not symmetric around 95%.

The use of Mahalonobis distance has the advantage of normal-
izing the features and removing their correlation before fusing
them. This is reflected by the use of the covariance matrix in the
distances (5). Furthermore, the generation of confidences using
(6) is based on the theoretically sound likelihood ratio when v is
assumed to be Gaussian and when a ¼ 1 [64].

4.5. Dempster–Shafer based Fusion

Dempster–Shafer (DS) is a mathematical theory of evidence for
representing uncertain knowledge [65,66]. In a finite discrete
space, DS can be interpreted as a generalization of probability the-
ory where probabilities are assigned to sets as opposed to mutually
exclusive singletons. In DS, evidence can be associated with multi-
ple possible events, e.g., sets of events. As a result, evidence in DS
can be meaningful at a higher level of abstraction without having
to resort to assumptions about the events.

DS fusion was applied to handwriting recognition [67], decision
making [68], face detection [69], landmine detection [60,61,48],
and more [55,70]. One important feature of DS is the ability to cope
with varying levels of precision regarding the information with no
further assumptions needed to represent the information. It also
allows for direct representation of uncertainty of system re-
sponses. However, DS fails to give an acceptable solution to fusion
problems with significant conflict [71,72]. Consequently, many
researchers developed modified Dempster rules to represent the
degree of conflict [70].

DS and Bayesian theories have been studied and compared
extensively [73,57,74]. Both theories have initial requirements.
DS theory requires masses to be assigned to alternatives in a mean-
ingful way, including the unknown state; whereas Bayes theory re-
quires prior probabilities. In general, the results of both methods
may be comparable, but the implementations may require differ-
ent amounts of effort and information. Thus, selecting one ap-
proach over the other usually depends on the extent to which
prior information is available.

Let H ¼ fh1; . . . ; hKg be a finite set of possible hypotheses, also
referred to as the frame of discernment. The basic belief assign-
ment function, m, a primitive of evidence theory, assigns a value
in [0,1] to every subset A of H and satisfies

mð/Þ ¼ 0; and
X
A# H

mðAÞ ¼ 1: ð7Þ

mðAÞ is the belief that supports A , but makes no additional claims
about any of the subsets of A. Two basic belief functions m1 and m2

can be combined to obtain the belief mass committed to C � H as
follows [66],

mðCÞ ¼ m1ðCÞ 	m2ðCÞ ¼
P

j;k;Aj\Bk¼Cm1ðAjÞm2ðBkÞ
1�

P
j;k;Aj\Bk¼/m1ðAjÞm2ðBkÞ

; C – /:

ð8Þ

This combination rule is extended to several belief functions by
repeating the rule for new belief functions. The denominator in (8)
is a normalizing factor, which intuitively measures how much m1

and m2 are conflicting. This normalization has the effect of com-
pletely ignoring conflict and causing any belief mass associated

with conflict to the null set [71]. Consequently, in the case of a sig-
nificant conflict, this normalization can yield counterintuitive re-
sults. Fortunately, for the application under consideration, alarms
with strongly conflicting evidence are unlikely. This is because all
of the discrimination algorithms considered here use data from
the same sensor (GPR) and try to identify signatures that have a
consistent shape.

In some applications, we have prior knowledge about reliability
of the sources. In this case, we can assign them weights before
combining their belief functions, resulting in a weighted Demp-
ster–Shafer fusion rule:

mðCÞ ¼ m1 	m2ðCÞ

¼
P

j;k;Aj\Bk¼Cw1m1ðAjÞw2m2ðBkÞ
1�

P
j;k;Aj\Bk¼/w1m1ðAjÞw2m2ðBkÞ

; C – /: ð9Þ

Since we have classes mine (M) and clutter (C), we build the
frame of discernment as H ¼ f;; fMg; fCg; fM;Cgg. For each indi-
vidual algorithm i, we associate a basic belief function mi such that

miðfMgÞ ¼ pm
i ; miðfCgÞ ¼ pc

i ; and miðfM;CgÞ ¼ 1� pm
i � pc

i ;

ð10Þ

where pm
i and pc

i are the confidences in the mine and clutter classes
generated by algorithm i. These values are computed from the algo-
rithms’ confidence values as follows. First, we separate the training
mine alarms from the clutter alarms and, for each algorithm i, we
compute the cumulative probability distribution of each class, Gm

i

and Gc
i . Then, we compute pm

i ¼ Gm
i ðyiÞ and pc

i ¼ 1� Gc
i ðyiÞ. Since

pm
i and pc

i are computed independently using the training data of
each class, they are not constrained to sum to 1.

The fusion of the eight algorithms is performed by combining
their basic belief functions using (8) or (9). In the latter case, the
weights are obtained from training data based on individual algo-
rithm performance. The final mine confidence is

ConfDS ¼ mðfMgÞ �mðfCgÞ þ K; ð11Þ

where K is a constant used to ensure that ConfDS P 0 for all test
samples.

4.6. Decision template fusion

Decision template (DT) is a fusion scheme that combines classi-
fier outputs by comparing them to a characteristic template for
each class [75]. DT fusion uses all classifier outputs to calculate
the final support for each class, which is in sharp contrast to most
other fusion methods which use only the support for that particu-
lar class to make their decision. The DT approach treats the classi-
fier outputs as input to a second-level classifier in some
intermediate feature space, and designs a new classifier for the sec-
ond (combination) level.

DT fusion is computationally simple and does not rely on ques-
tionable assumptions. However, it does not consider the possible
correlation among the individual classifiers. Moreover, its perfor-
mance may depend on the distribution of the classifiers’ output
which can affect the similarity measure in the intermediate feature
space. DT fusion has been applied to various areas such as time ser-
ies classification [76], biometrics [77], and intrusion detection [78],
and compared with many other fusion techniques. The results are
in general inconclusive, which confirms that there is no fusion
method that outperforms all others in all applications.

Let dijðxÞ 2 ½0;1� represent the degree of support given by algo-
rithm i to the hypothesis that x comes from class wj (e.g. the pos-
terior probability PðwjjxÞ). The outputs of all classifiers are
organized in a decision profile matrix DPðxÞ. The value in row i
and column j of the decision profile matrix is dijðxÞ [75]. Using
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DPðxÞ as an intermediate features space, one can build a minimum-
error classifier by replacing the problem of estimating PðwijxÞ with
one of estimating PðwijDPðxÞÞ. Thus, the initial feature space with n
features, Rn, is transformed into a new space with L� C features.

Training consists of calculating one DT per class using the train-
ing data. Let Zi be the subset of the training set belonging to class
wi and Ni be the cardinality of Zi. The decision template for class wi,
denoted DT i is the mean of the class in the intermediate feature
space:

DT i ¼
1
Ni

X
zj2Zi

DPðzjÞ: ð12Þ

To test a sample x, we construct DPðxÞ and calculate the dis-
tance between DPðxÞ and each DT i using

dEðDPðxÞ;DT iÞ ¼
XC

j¼1

XL

k¼1

ðdk;jðxÞ � dtiðk; jÞÞ2; ð13Þ

where dtiðk; jÞ is the ðk; jÞth entry in the decision template DT i. The
support for class wi offered by combining the L classifiers, Conf i

DTðxÞ,
is then found by measuring the similarity between the current
DPðxÞ and DT i:

liðxÞ ¼ 1� 1
L� C

dEðDPðxÞ;DT iÞ: ð14Þ

In the landmine detection application, we use the confidence
values of the eight algorithms to construct an 8� 2 decision tem-
plates. We let di1ðxÞ ¼ pi

mðxÞ and di2ðxÞ ¼ pi
cðxÞ, where pi

m and pi
c are

the mine and clutter probabilities computed as in Section 4.5. The
final mine confidence value is

ConfDTðxÞ ¼ l1ðxÞ � ð1� l2ðxÞÞ: ð15Þ

4.7. Rank-based fusion

This approach is based on the voting method proposed by Borda
[79]. Each algorithm ranks all the candidate objects in order of
their confidences. In particular, each algorithm i maps the confi-
dence value of object xj; ðyiðxjÞÞ, to a rank value r using

riðxjÞ ¼ 1þ
X
k–j

vP yiðxjÞ; yiðxkÞ
� �

þ 1
2

X
k–j

v¼ yiðxjÞ; yiðxkÞ
� � !

: ð16Þ

In (16), vP is the characteristic function that maps a pair in
which the first element is greater than or equal to the second to
1 and all other pairs to 0. Similarly, v¼ maps identical pairs to 1.
Thus, each object in the training set will have a rank in the interval
½1;N�, where N is the size of the training set.

Let ai 2 R; i ¼ 1; . . . ; L. The weighted Borda fusion of L algo-
rithms is defined to be weighted sum of the ranks assigned by each
algorithm:

ConfBwðxÞ ¼
1

N � L

XL

i¼1

airiðxÞ: ð17Þ

If ai ¼ 1 8i, (17) is called the Borda count and ConfBw ðxÞ 2 ½0;1�.
Borda fusion has been applied to landmine detection [80], and

(in a different way) to handwriting recognition [46], and fusion
of social choices (voting, evaluation, etc.) The main advantages of
the Borda based fusion is that it makes no assumptions about the
underlying distributions of the confidence value assignments. In
addition, it maps each of the confidence distribution to a uniform
distribution, thus providing a reasonable method for combining
decision statistics.

To apply this voting strategy in a supervised learning setting,
we rank the training set alarms as shown in (16). Although the

algorithm confidences may depend upon the properties of the
training set, the ranking process makes no use of such a priori
information. Rank values are assigned to test objects using the
training set rankings. Thus, if algorithm i assigns confidence xk to
object k, we assign rank riðxkÞ (the training set rank associated with
that algorithm confidence value) to object k.

We have explored weight selection techniques such as Kendall’s
rank correlation coefficient [81], coefficient of concordance [82],
and weights motivated by gambling theory [83]. All of them out-
perform unweighted Borda fusion. Exhaustive search can be used
to assign weights for small collections of algorithms, but is too
computationally burdensome for large collections.

Given an assignment of algorithm weights, w, ConfBw maps each
object to its corresponding confidence. Thus, for each vector w,
there is a ROC curve. As in the GEOM detector, we seek to maxi-
mize the area under the ROC curve. Consider the function
AUCðwÞ, mapping an algorithm weight assignment to the corre-
sponding area under the ROC curve given by ConfBw . To identify
the best weights to use, we perform gradient ascent on AUCðwÞ
starting with wi ¼ 1=L for all i. The weights are constrained to
sum to 1, but they can be either positive or negative.

4.8. Discrete Choquet integral

The Choquet integral has been investigated for information fu-
sion by many researchers [84–89,45,90–93]. This integral defines
a family of generally nonlinear aggregation operators on some
function of the algorithm confidence values, which we will refer
to as a decision statistic. The aggregation operator is defined by
the discrete Choquet integral with respect to a non-additive fuzzy
measure. As used here, fuzzy measures are real-valued functions
defined on sets of algorithms. There are many non-additive mea-
sures that can be used with the Choquet integral. The Choquet inte-
gral with respect to a specific non-additive measure is a specific
aggregation operator such as the mean, median, max, min, trimmed
means, Ordered Weighted Averaging operators, and voting operators
as well as more complex operators. Many of these operators are al-
ready used in fusion. The Choquet integral is a mathematical con-
struct that can be used to optimize the aggregation operator for a
specific fusion application.

Discrete fuzzy measures and Choquet integrals are defined as
follows [94,86,8]:

Definition 1. Let Y ¼ fy1; . . . ; yng be any finite set. A discrete fuzzy
measure on Y is a function l : 2Y ! ½0;1� with the following
properties:

(1) lð;Þ ¼ 0 and lðYÞ ¼ 1.
(2) Given A;B 2 2Y , if A � B then lðAÞ 6 lðBÞ (Monotonicity

Property).

Definition 2. Let f : Y ! ½0;1� and let r denote a permutation such
that 0 6 f ðyrð1ÞÞ 6 � � � 6 f ðyrðnÞÞ, and let AðiÞ be given by AðiÞ ¼
fyrðiÞ; . . . ; yrðnÞg. The Choquet integral of f is:

Clðf Þ ¼
Xn

i¼1

lðAðiÞÞðf ðyðiÞÞ � f ðyði�1ÞÞÞ ¼
Xn

i¼1

f ðyðiÞÞðlðAðiÞÞ � lðAðiþ1ÞÞÞ;

ð18Þ

where we take f ðyð0ÞÞ 
 0; Aðnþ1Þ 
 ; and yðiÞ 
 yrðiÞ.

In these experiments, algorithm ranks as described in the sec-
tion on Borda fusion are used as the function f.

Several algorithms have been proposed for learning fuzzy mea-
sures [88,95,96]. In this paper, we report the results obtained using
a learning algorithm that is based on a Bayesian model that
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combines logistic regression with sparsity promoting priors [97].
More specifically, this algorithm seeks to maximize the a-posteri-
ori probability of the measure given the data. The posterior proba-
bility of the measure is proportional to the product of the
likelihood function and the prior probability of the measure. An
exponential prior is assumed on the fuzzy measure parameters.
Since the probability of a zero parameter is very high with this
prior, it is likely to drive measure parameters to zero in the learn-
ing process and potentially eliminate unnecessary algorithms from
the fusion. The likelihood function is a binomial distribution, and
the MAP estimate is computed using a Gibbs sampling algorithm
that is designed to maintain the monotonicity constraints of the
fuzzy measure [97].

4.9. Context-dependent fusion

The context-dependent fusion (CDF) approach [51] is motivated
by the observation that there is no single algorithm that can con-
sistently outperform all others detectors. For instance, in landmine
detection, the relative performance of different detectors can vary
significantly depending on the mine type, geographical site, soil
and weather conditions, and burial depth.

The training part of CDF has two main components: Context
Extraction, and Algorithm Fusion. In Context Extraction, the features
extracted by the different algorithms are combined, and a cluster-
ing algorithm is used to partition the training signatures into
groups of similar signatures, or contexts, and learn the relevant
features within each context. It is assumed that signatures that
have similar response to different algorithms share some common
features, and would be assigned to the same cluster. The Algorithm
Fusion component assigns an aggregation weight to each detector
in each context based on its relative performance within the con-
text. To test a new signature using CDF, each detector extracts its
set of features and assigns a confidence value. Then, the features
are used to identify the best context, and the aggregation weights
of this context are used to fuse the individual confidence values.

We should note here that CDF is an alternative approach to data
fusion that is local, and that adapts the fusion method to different
regions of the feature space. It has been applied to landmine detec-
tion [51] using simple linear aggregation. However, any of the fu-
sion methods outlined earlier could be integrated into this
approach.

The features extracted by the seven discrimination algorithms
from the training alarms are used to partition the feature space
into 20 clusters. We use SCAD [98] to do so since it can partition
the feature space and learn optimal feature relevance weights for
each partition. For each cluster, the seven algorithms and the pres-
creener are scored separately and a degree of worthiness is as-
signed to each based on the overlap between the distributions of
the mine and clutter confidence values. Algorithms with less over-
lap are considered more ‘‘expert” for the cluster under consider-
ation, and are assigned larger weights. The worthiness of all

eight algorithms are constrained to sum to 1. Let Ok denote the
overlap for algorithm k. The degree of worthiness of algorithm k
in context i is computed using

wi
k ¼

1
�þðOi

kÞ
2P8

j¼1
1

�þðOi
jÞ

2

; ð19Þ

where � is a small number used to avoid division by zero when the
classes are separable. Assuming that alarm x is assigned to context i,
its fused confidence value is computed using

ConfCDFðxÞ ¼
X8

k¼1

wi
k � yk; ð20Þ

where yk is the confidence value assigned by algorithm k.
The above fusion methods were selected for evaluation and

comparison for the landmine detection application because they
have very distinctive properties. For instance, one method (CDF)
is local and adapts the detectors’ worthiness to different data sub-
spaces. The other methods are global and assign a degree of wor-
thiness to each detector that is averaged over the entire training
data. Also, some fusion methods operate on the detectors’ confi-
dence values of the alarms, others (Borda and fuzzy integral) oper-
ate on the ranks of the alarms, and others (CDF) require both
confidence values and features used by the classifiers. Another
main difference between these fusion methods is the way they
are trained. Some methods use straightforward training (e.g. Deci-
sion template and Bayes), while others (e.g. fuzzy integral) use
more elaborate training algorithms. Moreover, the trainable meth-
ods use different optimization criteria. For instance, some try to
maximize the area under the ROC, while others minimize the over-
lap between the distribution of the confidence values in the classes
of mines and clutter. These algorithms were developed by various
subsets of the authors. Maximal performance for each fusion algo-
rithm was always the goal of the algorithm developer. As is always
the case, it is possible that better performance could be found with
any of the tested approaches, such as Dempster–Shafer, for exam-
ple. The characteristics of the different fusion methods are summa-
rized in Table 1.

5. Experimental results

5.1. Dataset statistics

The discrimination algorithms and the different fusion methods
were implemented and tested with data collected using the NIITEK
vehicle mounted GPR system. The data were collected between
November 2002 and July 2006 from four geographically distinct
test sites. Sites A, B, and D are temperate climate test facilities with
prepared soil and gravel lanes. Site C is an arid climate test facility
with prepared soil lanes. The four sites have a total of 17 different
lanes with known mine locations. All mines are anti-tank (AT)
mines. In all, there are 19 distinct mine types that can be classified

Table 1
Characteristics of the seven fusion methods.

Fusion Alg. Assumption Input Local/
global

Considers
classifiers
correlation

Considers
subsets
of classifiers

Aggregation
weights

Requires
training

Optimized criterion

Bayes Mixture of Gaussian Conf. Global Yes No N/A Yes Log likelihood
Mahalanobis distance Gaussian distribution Conf. Global Yes No N/A Yes Average FAR for PD 2 ½92%;96%�
Dempster–Shafer N/A Conf. Global No No Positive Yes N/A
Decision template N/A Conf. Global No No N/A Yes Distance to decision template
Borda N/A Rank Global No No Positive/negative Yes Area under ROC
Fuzzy integral N/A Rank Global No Yes Positive Yes Posterior prob. of the measures
Context-dependent N/A Conf. + Feat Local No No Positive Yes Class dist. overlap
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into three categories: anti-tank metal (ATM), anti-tank with low
metal content (ATLM), and simulated mines (SIM). The targets
were buried up to 6 in. deep. Multiple data collections were per-
formed at each site at different dates, covering a ground area of
41;807:57 m�2, resulting in a large and diverse collection of mine
and false alarm signatures. False alarms arise as a result of radar
signals that present a mine-like character. Such signals are gener-
ally said to be a result of clutter. In this experiment, clutter arises
from two different processes.One type of clutter is emplaced and
surveyed in an effort to test the robustness of the algorithms. Other
clutter result from human activity unrelated to the data collection
or as a result of natural processes. We refer to this second kind of
clutter as non-emplaced. Non-emplaced clutter includes objects
discarded or lost by humans, soil inconsistencies and voids, stones,
roots and other vegetation, as well as remnants of animal activity.

The statistics of the data are shown in Table 2. The data col-
lected from Sites B and D have emplaced buried clutter. Although
the lanes at Sites A and C are prepared, they still contain non-em-
placed clutter objects. Both metal and non-metal non-emplaced
clutter objects such as ploughshares, shell casings, and large rocks
have been excavated from these sites. The emplaced clutter objects
include steel scraps, bolts, soft-drink cans, concrete blocks, plastic
bottles, wood blocks, and rocks. In all, there are 12 collections hav-
ing 19 distinct mine types. Many of these mine types are present at
several sites. The prescreener detected 1560 of the 1593 mines
encountered in the data, yielding a 97.9% probability of detection.
It rejected 161 of 211 emplaced clutter objects encountered, and
yielded a total of 3435 false alarms associated with non-emplaced
clutter objects. The number, type, and burial depth of the mines are
given in Table 3. As it can be seen, the mines buried at 1 inch
through 6 inches occupy 87.5% of the total targets encountered
vs. 12.5% surface-laid or flush-buried mines.

5.2. Implementation issues

Each of the seven detection algorithms (EHD, HMM, Spect,
Geom, TFCM, GFIT, and GMRF) and the seven fusion methods (con-
text-dependent, Bayes, decision template, Dempster–Shafer,
Mahalanobis distance, fuzzy integral, and Borda count) were
implemented for use with the Testing/training Unified Framework
(TUF) system. This system supports creation of supervised learning
algorithms that perform discrimination between targets and non-
targets in data collected at a variety of different regions (mine
lanes) in a variety of different sites. The framework employs algo-

rithms implemented in Matlab using a control flow that incorpo-
rates a user-programmed prescreener (NUKEv6) that processes
raw data files into alarms with associated Universal Transverse
Mercator (UTM) coordinates and confidence values. The alarms
are then processed by extracting signatures. These signatures are
passed to a user-specified feature extractor. The features resulting
from the feature extractor are presented along with the alarms to a
discrimination algorithm, which produces a confidence for each
alarm. The system performs n-way cross validation testing using
either lane-based cross validation (in which each mine lane is in
turn treated as a test set with the rest of the lanes used for training)
or site-based cross validation (in which each data collection site is
treated in turn as a test set). The EHD, Geom, TFCM, GFIT, and
GMRF detection algorithms are trained in this cross validation
manner. The HMM was based on a model trained using a different
radar system and the Spect employs a single static mine model and
is not trained. For the fusion, all algorithms are trained and tested
using the same cross validation scheme.

5.3. Evaluation method

To provide an objective and consistent evaluation of all algo-
rithms, we use the TUF system with lane-based cross validation.
The results of this process are scored using the MIne Detection
Assessment and Scoring (MIDAS) system developed by the Insti-
tute for Defense Analysis [99]. The scoring is performed in terms
of probability of detection (PD) vs. false alarm rate (FAR). Confi-
dence values are thresholded at different levels to produce Recei-
ver Operating Characteristic (ROC) curve. For a given threshold, a
mine is detected if there is an alarm within 0.25 m from the edge
of the mine with confidence value above the threshold. Given a
threshold, the PD is defined to be the number of mines detected di-
vided by the number of mines. The FAR is defined as the number of
false alarms per square meter.

5.4. Results and analysis

5.4.1. Individual detection algorithms
First, we compare the performance of the individual detectors

and justify the need to fuse their results to improve the overall per-
formance of the system. Fig. 3 displays the ROC’s obtained by
applying the seven detection algorithms and the prescreener to
the entire data collection. As it can be seen, the EHD detector has
the best overall performance. However, this does not necessarily
mean that the EHD is consistently the best algorithm. For instance,
Fig. 4a displays the results averaged over site A of the collection
only. For this subset, the EHD is the best algorithm and the HMM

Table 2
Statistics of the dataset.

Site A Site B Site C Site D Total

No. collections 3 6 2 1 12
No. mine types 9 15 9 5 19
No. mine alarms 183 821 62 494 1560
No. clutter encounters 0 15 0 196 211
No. clutter alarms post prescreener 0 4 0 46 50
Area ðm2Þ 14,813 15,631 4054 7310 41,808

Table 3
Number of metal and plastic cased mines and mine simulants and their burial depths.

Depth Total

�1 in. 0 in. 1 in. 2 in. 3 in. 4 in. 5 in. 6 in.

Metal 12 37 124 68 151 34 119 77 777
Low-metal 6 92 90 204 122 134 47 76 616
Simulants 48 0 20 47 23 29 0 0 167
Total 66 129 234 319 296 197 166 153 1560

Fig. 3. Performance of the eight different detectors on the entire data collection.
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is the second best one. However, in Fig. 4b, which displays the re-
sults averaged over site B only, the HMM is the best algorithm and
EHD is the second best one.

Thus, there is no single algorithm that can consistently outper-
form all others detectors. In fact, the relative performance of differ-
ent detectors can vary depending on the geographical site and soil
and weather conditions. Moreover, even within the same site, the
relative performance of the different algorithms can vary signifi-
cantly depending on the mine type, burial depth, and other un-
known factors. To illustrate this, we compare the output of the
HMM and EHD detectors for a small subset of alarms extracted
from the same site in Fig. 5. For instance, the highlighted region
(R1) in Fig. 5a includes mainly clutter signatures where the HMM
algorithm outperforms the EHD (lower HMM confidence values).
On the other hand, for the same subset, region (R2) includes mainly
mine signatures where the EHD detector outperforms the HMM
(higher EHD confidence). Fig. 5b highlights two other regions for
another geographical site.

5.4.2. Fusion results
Our objective is to evaluate a set of fusion methods to combine

the output of several landmine discrimination algorithms to deter-
mine their suitability for use in an automated detection system in a
variety of locations and under different environments. In addition
to the performance of these fusion methods, we are also interested
in their scalability with respect to the number of discrimination

algorithms. Thus, we compare these methods when 4, 6, and 8 dis-
crimination algorithms are considered.

Fig. 6 displays the results of the seven fusion algorithms when
only four discrimination algorithms (EHD, HMM, SPect, and NUKE)

Fig. 4. Performance of the eight detectors on: (a) Site A only; and (b) Site B only.

Fig. 5. Comparison of the EHD and HMM outputs for several mine (green dots) and clutter (red stars) signatures extracted from: (a) a subset of Site A; and (b) a subset of Site
B. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Comparison of seven fusion methods when four discrimination algorithms
(EHD, HMM, Spect, and NUKE) are combined.
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are fused. We also include the ROC of the EHD (best overall dis-
crimination algorithm) as a reference. As it can be seen, the ROC’s
of all fusion methods are clustered together, and thus all methods
have comparable performances. All fusion methods improve the
PD results over the best discrimination algorithm by an average
of 10% for FAR around 0.0007. At low PD (<80%), the Mahalanobis
distance based fusion results are not as good as the other methods.
This is due mainly to the fact that one single Gaussian component
may not be sufficient to model the distribution of the confidence
values of the individual discriminators in the four-dimensional
confidence space. The Bayes-based method, which is similar to
the distance based, does not exhibit this behavior because multiple
Gaussian components (M was estimated to be 4) were used to
model the distribution of each class. It is also interesting to note
that the distance based fusion outperforms Bayes at higher PD. This
is because the former method is optimized to minimize the aver-
age FAR for PD 2 ½92%;96%�.

Fig. 7 displays the results of the seven fusion algorithms when
only six discrimination algorithms (EHD, HMM, SPect, NUKE,
Geom, and TFCM) are fused. First, we notice the addition of two
discrimination algorithms did not improve the results of any of
the fusion methods. Two possible reasons may explain this behav-
ior. First, the added discrimination algorithms (TFCM and Geom)
are based on edge, texture, and geometric features that are already
used (in a different way) by the other discrimination algorithms.
Second, it is possible that for the data collection that was used, it
is not possible to improve the results further.

Comparing the results in Fig. 7 to those in Fig. 6, we observe that
for some fusion methods, the performance has degraded. In partic-
ular, the performance of the Dempster–Shafer (DS) and the deci-
sion template (DT) methods have dropped significantly at low PD
(<80%) and have become even worse than the EHD discriminator.
Investigation of this problem has revealed that these two fusion
methods generate confidence values that have a distribution close
to binary. This behavior is due to the way the basic belief functions
are aggregated (refer to Eq. (9)). In particular, adding more algo-
rithms will require more multiplications. For the DT method, the
dimension of the decision template matrix increases, and this
may drive the distances in (13) to a bimodal distribution. Due to
these nearly binary distributions, weak mines will be assigned con-
fidence values close to zero, and this would explain the lower PD at
low FAR. Also, strong false alarms will be assigned confidence val-
ues close to 1, and this would explain the relatively lower PD at
higher FAR.

Fig. 8 compares the results of the seven fusion algorithms when
eight discrimination algorithms (EHD, HMM, SPect, NUKE, Geom,
TFCM, GFIT, and GMRF) are fused. First, we note that the perfor-
mance of the DT and DS degraded further as the confidence values
become closer to binary. Second, the performance of all other fu-
sion methods (except CDF) have degraded compared to the fusion
of four algorithms only. This may be due to the fact that the four
added algorithms have lower performances (refer to Fig. 3), and
when all eight algorithms are fused globally, the added algorithms
have a negative impact. Third, we note that the dependency
assumption does not seem to be an issue. In fact, the two best fu-
sion methods (CDF and Borda) assume that the eight discrimina-
tion algorithms are independent.

The Borda count fusion is the second best method, and does not
seem to be affected by the addition of discrimination algorithms.
This is due to the fact that this method allows for negative aggre-
gation weights as long as they improve the area under the ROC.
Thus, as we add more discrimination algorithms (with worse over-
all performance), this method will assign negative (or zero)
weights to these algorithms.

The CDF has the best overall performance. Moreover, the addi-
tion of discrimination algorithms did not degrade its performance.
In fact, for certain FAR values, its performance has improved. This
is due to the fact that this method is local and strives to take
advantage of the different detectors in different contexts. For any
cluster (or context) the detectors are ranked based on the overlap
between the mine and clutter confidence distribution. This ranking
can ignore (by assigning low aggregation weights) many of the dis-
crimination algorithms. It could also assign a significant weight to
discrimination algorithms that are good for the given context, but
globally, are not as good as other algorithms. We have observed
that on average, this fusion assigns significant aggregation weights
to 3–5 discrimination algorithms. These algorithms differ from one
cluster to another.

Finally, we should note the fuzzy integral approach is trained
using a learning algorithm that combines logistic regression with
sparsity promoting priors. Thus, it is designed to ignore individual
discrimination algorithms that do not improve the results. How-
ever, the results do not seem to support this. This may be due to
the fact that the number of parameters increases exponentially
as we increase the number of algorithms. Thus, the search for the
optimal parameters becomes more complex and may lead to sub-
optimal solutions.

Fig. 7. Comparison of seven fusion methods when six discrimination algorithms
(EHD, HMM, Spect, NUKE, Geom, and TFCM) are combined.

Fig. 8. Comparison of seven fusion methods when eight discrimination algorithms
(EHD, HMM, Spect, NUKE, Geom, TFCM, GFIT, and GMRF) are combined.
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6. Conclusions

We have presented results of an evaluation of several fusion
methods to combine the output of several anti-tank landmine dis-
crimination algorithms. Our objective was to determine the suit-
ability of these methods for use in an automated detection
system in a variety of locations and under different environments.
Our extensive research and testing in this application has revealed
that algorithm performances for buried anti-tank landmine detec-
tion are strongly dependent upon a variety of factors that are not
well understood. It is typically the case that one algorithm may
perform well in one setting and not so well in another. Thus, in or-
der to achieve a reliable and robust detection system, several dis-
tinct detection algorithms need to be developed and fused.
Therefore, in addition to the performance of the different fusion
methods, we are also interested in their scalability with respect
to the number of discrimination algorithms. In particular, their
ability to take advantage of discrimination algorithms that perform
well for only a small subset of the data without being affected by
their weakness. To investigate this, we have compared the seven
fusion methods when 4, 6, and 8 discrimination algorithms are
considered.

Our experimental results show that although the fusion algo-
rithms were all quite similar when a small number of algorithms
were fused, the performance was more varied as the number of
algorithms increased. Context-dependent fusion appears to be an
excellent approach that should be investigated in more detail in fu-
ture work. Aggregation operators that are allowed to use negative
weights appear to perform better than those that do not. Sparsity
promoting priors do not necessarily lead to better performance
as the number of algorithms increases. The tradeoff between pro-
moting sparsity and computational complexity is difficult to con-
trol. Fusion algorithms that tend to binarize confidence values as
the number of inputs increases also degraded as a function of the
number of algorithms fused. The assumption that the individual
detectors are statistically independent does not seem to be a signif-
icant factor in affecting the performance of the fusion methods.
However, this may be an important issue should the need to re-
duce the overall computational requirements of the system arises.
Future work will look at integrating the Bayes, Dempster–Shafer,
and the Choquet fusion methods within the context-based fusion
concept.

Acknowledgment

The authors thank R. Harmon, R. Weaver, P. Howard, and T.
Donzelli for their support of this work, E. Rosen and L. Ayers of
IDA for useful software and insight. We also thank L. Carin, L. Col-
lins and P. Torrione of Duke University and NIITEK, Inc., for their in-
sights, cooperation, discrimination algorithms, and data. This work
was supported in part by NSF Awards No. CBET-0730802 and
CBET-0730484, ONR Award Number N00014-05-10788, ARO and
ARL Cooperative Agreement Number DAAD19-02-2-0012 and
Grant Number DAAB15-02-D-0003. The views and conclusions
contained in this document are those of the authors and should
not be interpreted as representing the official policies, either ex-
pressed or implied, of the Army Research Office, Office of Naval Re-
search, Army Research Laboratory, or the US Government.

References

[1] Hidden Killers, The Global Landmine Crisis, United States Department of State
Report, Publication No. 10575, September 1998.

[2] J.A. MacDonald, Alternatives for Landmine Detection, RAND Corporation, 2003.
[3] J.N. Wilson, P. Gader, W. Lee, H. Frigui, K.C. Ho, A large-scale systematic

evaluation of algorithms using ground-penetrating radar for landmine

detection and discrimination, IEEE Transactions on Geoscience and Remote
Sensing 45 (2007) 2560–2572.

[4] S.L. Tantum, Y. Wei, V.S. Munshi, L.M. Collins, A comparison of algorithms for
landmine detection and discrimination using ground penetrating radar, in:
Proceedings of the SPIE Conference on Detection and Remediation
Technologies for Mines and Minelike Targets, 2002, pp. 728–735.

[5] P. Gader, B. Nelson, H. Frigui, G. Vaillette, J. Keller, Fuzzy logic detection of
landmines with ground penetrating radar, Signal Processing 80 (2000) 1069–
1084 (special issue on fuzzy logic in signal processing).

[6] P. Gader, M. Mystkowski, Y. Zhao, Landmine detection with ground
penetrating radar using hidden markov models, IEEE Transactions on
Geoscience and Remote Sensing 39 (2001) 1231–1244.

[7] H. Frigui, P. Gader, K. Satyanarayana, Landmine detection with ground
penetrating radar using fuzzy k-nearest neighbors, in: Proceedings of the
IEEE Conference on Fuzzy Systems, Budapest, Hungary, 2004, pp. 1745–1749.

[8] P. Gader, L. Wen-Hsiung, A. Mendez-Vazquez, Continuous Choquet integrals
with respect to random sets with applications to landmine detection, in: IEEE
International Conference on Fuzzy Systems, 2004, pp. 523–528.

[9] P. Gader, A. Mendez-Vasquez, K. Chamberlin, J. Bolton, A. Zare, Multi-sensor
and algorithm fusion with the Choquet integral: applications to landmine
detection, in: Geoscience and Remote Sensing Symposium, vol. 1, 2004, pp.
1605–1608.

[10] P. Torrione, L. Collins, Application of texture feature classification methods to
landmine and clutter discrimination in off-road GPR data, in: Geoscience and
Remote Sensing Symposium, vol. 1, 2004, pp. 1621–1624.

[11] S. Sheedvash, M. Azimi-Sadjadi, Structural adaptation in neural networks with
applications to land mine detection, in: IEEE International Conference on
Neural Networks, 1997, pp. 1443–1447.

[12] Q.L.J. Zhang, B. Nath, Landmine feature extraction and classification of GPR
data based on SVM method, in: International Symposium on Neural Networks,
2004, pp. 636–641.

[13] X. Miao, M. Azimi-Sadjadi, B. Tian, A. Dubey, N. Witherspoon, Detection of
mines and minelike targets using principal component and neural methods,
in: IEEE International Conference on Neural Networks, 1998, pp. 454–463.

[14] C. Yang, Landmine detection and classification with complex-valued hybrid
neural network using scattering parameters dataset, IEEE Transactions on
Neural Networks 16 (3) (2005) 743–753.

[15] O. Lohlein, M. Fritzsche, Classification of GPR data for mine detection based on
hidden markov models, in: EUREL Conference on the Detection of Abandoned
Landmines, 1998, pp. 96–100.

[16] T.R. Witten, Present state of the art in ground-penetrating radars for mine
detection, in: SPIE Conference on Detection and Remediation Technologies for
Mines and Minelike Targets III, 1998, pp. 576–586.

[17] P.D. Gader, H. Frigui, B. Nelson, G. Vaillette, J.M. Keller, New results in fuzzy set
based detection of landmines with GPR, in: Detection and Remediation
Technologies for Mines and Minelike Targets IV, 1999, pp. 1075–1084.

[18] H.T. Kaskett, J.T. Broach, Automatic mine detection algorithm using ground
penetrating radar signatures, in: SPIE Conference on Detection and
Remediation Technologies for Mines and Minelike Targets, 1999, pp. 942–952.

[19] E. Rosen, Investigation into the sources of persistent ground-penetrating radar
false alarms: data collection, excavation, and analysis, in: Proceedings of the
SPIE Conference on Detection and Remediation Technologies for Mines and
Minelike Targets VIII, 2003, pp. 185–190.

[20] P.A. Torrione, C.S. Throckmorton, L.M. Collins, Performance of an adaptive
feature-based processor for a wideband ground penetrating radar system, IEEE
Transactions on Aerospace and Electronic Systems 42 (2) (2006) 644–657.

[21] P. Gader, W.H. Lee, J.N. Wilson, Detecting landmines with ground penetrating
radar using feature-based rules, order statistics, and adaptive whitening, IEEE
Transactions on Geoscience and Remote Sensing 42 (11) (2004) 2522–2534.

[22] K.J. Hintz, Snr improvements in NIITEK ground penetrating radar, in:
Proceedings of the SPIE Conference on Detection and Remediation
Technologies for Mines and Minelike Targets IX, 2004, pp. 399–408.

[23] D. Carevic, Clutter reduction and target detection in ground penetrating radar
data using wavelets, in: Proceedings of the SPIE Conference on Detection and
Remediation Technologies for Mines and Minelike Targets IV, 1999, pp. 973–
978.

[24] D. Carevic, Kalman filter-based approach to target detection and target-
background separation in ground-penetrating radar data, in: SPIE Conference
on Detection and Remediation Technologies for Mines and Minelike Targets IV,
1999, pp. 1284–1288.

[25] A. Gunatilaka, B.A. Baertlein, Subspace decomposition technique to improve
GPR imaging of anti-personnel mines, in: SPIE Conference on Detection and
Remediation Technologies for Mines and Minelike Targets V, 2000, pp. 1008–
1018.

[26] H. Brunzell, Detection of shallowly burried objects using impulse radar, IEEE
Transactions on Geoscience and Remote Sensing 37 (1999) 875–886.

[27] S. Yu, R.K. Mehra, T.R. Witten, Automatic mine detection based on ground
penetrating radar, in: SPIE Conference on Detection and Remediation
Technologies for Mines and Minelike Targets IV, 1999, pp. 961–972.

[28] H. Frigui, K.C. Ho, P. Gader, Real-time land mine detection with ground
penetrating radar using discriminative and adaptive hidden markov models,
EURASIP Journal on Applied Signal Processing 12 (2005) 1867–1885.

[29] H. Frigui, P.D. Gader, Detection and discrimination of land mines based on edge
histogram descriptors and fuzzy k-nearest neighbors, in: Proceedings of the
IEEE International Conference on Fuzzy Systems, Vancouver, BC, Canada, 2006,
pp. 1494–1499.

172 H. Frigui et al. / Information Fusion 13 (2012) 161–174



[30] K.C. Ho, L. Carin, P.D. Gader, J.N. Wilson, An investigation of using the spectral
characteristics from ground penetrating radar for landmine/clutter
discrimination, IEEE Geoscience and Remote Sensing Letters 46 (4) (2008)
1177–1191.

[31] P.D. Gader, W.-H. Lee, J.N. Wilson, Detecting landmines with ground
penetrating radar using feature-based rules order statistics, and adaptive
whitening, IEEE Transactions on Geoscience and Remote Sensing 42 (11)
(2004) 2522–2534.

[32] W.-H. Lee, P.D. Gader, J.N. Wilson, Optimizing the area under a receiver
operating characteristic curve with application to landmine detection, IEEE
Transactions on Geoscience and Remote Sensing 45 (2) (2007) 389–397.

[33] P. Torrione, L.M. Collins, Texture features for antitank landmine detection
using ground penetrating radar, IEEE Transactions on Geoscience and Remote
Sensing 45 (7) (2007) 2374–2382.

[34] M.-H. Horng, Texture feature coding method for texture classification, Optical
Engineering 42 (1) (2003) 228–238.

[35] P.A. Torrione, L. Collins, Application of Markov random fields to landmine
detection in ground penetrating radar data, in: Proceedings of the SPIE
Conference on Detection and Sensing of Mines, Explosive Objects, and
Obscured Targets XIII, vol. 6953, 2008, pp. 69531B–695312.

[36] P. Torrione, personal communication.
[37] L. Rastrigin, R. Erensterin, Method of Collective Recognition, Energoizdat,

Moscow, Russian, 1981 (in Russian).
[38] R. Jacobs, Methods for combining experts probability assessments, Neural

Computation 7 (5) (1995) 867–888.
[39] C. Ji, S. Ma, Combined weak classifiers, in: M. Mozer, M. Jordan, T.E. Petsche

(Eds.), Advances in Neural Information Processing Systems, vol. 9, MIT Press,
Cambridge, 1997, pp. 494–500.

[40] T. Ho, J. Hull, S. Srihari, Decision combination in multiple classifier systems, IEEE
Transactions on Pattern Analysis and Machine Intelligence 16 (1994) 66–75.

[41] P. Munro, B. Parmanto, Combining neural network regresion estimates with
regularized linear weights, in: M. Mozer, M. Jordan, T.E. Petsche (Eds.),
Advances in Neural Information Processing Systems, vol. 9, MIT Press,
Cambridge, 1997, pp. 592–598.

[42] S. Hashem, Optimal linear combinations of neural networks, Neural Networks
10 (4) (1997) 599–614.

[43] L. Lam, C. Suen, Optimal combination of pattern classifiers, Pattern Recognition
Letters 16 (1995) 945–954.

[44] J. Kittler, M. Hatef, R.P.W. Duin, J. Matas, On combining classifiers, IEEE
Transactions on Pattern Analalysis and Machine Intelligence 20 (3) (1998)
226–239.

[45] H. Tahani, J.M. Keller, Information fusion in computer vision uusing the fuzzy
integral, IEEE Transactions on Systems Man and Cybernetics 20 (3) (1990)
733–741.

[46] P.D. Gader, M.A. Mohamed, J.M. Keller, Fusion of handwritten word classifiers,
Pattern Recognition Letters 17 (6) (1996) 577–584.

[47] S. Le Hegarat-Mascle, I. Bloch, D. Vidal-Madjar, Introduction of neighborhood
information in evidence theory and application to data fusion of radar and
optical images with ppartial cloud cover, Pattern Recognition 31 (11) (1998)
1811–1823.

[48] N. Milisavljevic, I. Bloch, Sensor fusion in anti-personnel mine detection using
a two-level belief function model, IEEE SMC, PArt C: Applications and Reviews
33 (2003) 269–283.

[49] E. Mandler, J. Schurmann, Combining the classification results of independent
classifiers based on the Dempster–Shafer theory of evidence, Pattern
Recognition and Artificial Intelligence (1988) 381–393.

[50] L. Kuncheva, Switching between selection and fusion in combining classifiers:
an experiment, IEEE Transactions on Systems, Man, and Cybernetics – Part B
32 (2) (2002) 146–156.

[51] H. Frigui, L. Zhang, P. Gader, D. Ho, Context-dependent fusion for landmine
detection with ground penetrating radar, in: Proceedings of the SPIE
Conference on Detection and Remediation Technologies for Mines and
Minelike Targets IX, 2007, p. 655321.

[52] A. Verikas, A. Lipnickas, K. Malmqvist, M. Bacauskiene, A. Gelzinis, Soft
combination of neural classifiers: a comparative study, Pattern Recognition
Letters 20 (1999) 429–444.

[53] L. Kuncheva, Change-glasses approach in pattern recognition, Pattern
Recognition Letters 14 (1993) 619–623.

[54] K. Woods, W. Kegelmeyer, K. Bowyer, Combination of multiple classifiers using
local accuracy estimates, IEEE Transactions on Pattern Analysis and Machine
Intelligence 19 (4) (1997) 405–410.

[55] L. Klein, Sensor and Data Fusion Concepts and Applications, SPIE, 1993.
[56] H. Wu, Ph.D. Thesis Sensor Data Fusion for Context-Aware Computing Using

Dempster–Shafer Theory, 2003.
[57] S. Challa, D. Koks, Bayesian and Dempster–Shafer fusion, Sadhana 29 (2)

(2004) 145–174.
[58] D.M. Buede, P. Girardi, Information fusion in computer vision uusing the fuzzy

integral, IEEE Transactions on Systems, Man and Cybernetics – Part A 27 (5)
(1999) 569–577.

[59] D. Fasbender, J. Radoux, P. Bogaert, Bayesian data fusion for adaptable image
pansharpening, IEEE Transactions on Geoscience and Remote Sensing 46 (6)
(2008) 1847–1857.

[60] F. Cremer, E. Breejen, K. Schutte, Sensor data fusion for anti-personnel land-
mine detection, in: Proceedings of the International Conference on Data Fusion
(EuroFusion98), 1998, pp. 55–60.

[61] E. Breejen, K. Schutte, F. Cremer, Sensor fusion for anti personnel landmine
detection: a case study, in: Proceedings of the SPIE Conference on Detection
and Remediation Technologies for Mines and Minelike Targets IV, 1999, pp.
1235–1245.

[62] H. Frigui, R. Krishnapuram, Clustering by competitive agglomeration, Pattern
Recognition 30 (7) (1997) 1223–1232.

[63] K.C. Ho, P.D. Gader, H. Frigui, J.N. Wilson, Confidence level fusion of edge
histogram descriptor, hidden markov model, spectral correlation feature, and
nukev6, in: Proceedings of the SPIE Conference on Detection and Remediation
Technologies for Mines and Minelike TargetsXII, 2007, pp. 6553–20.

[64] M.K. Steven, Fundamentals of Statistical Signal Processing: Detection Theory,
Prentice Hall, 1998.

[65] A.P. Dempster, Upper and lower probabilities induced by a multivalued
mapping, The Annals of Statistics (28) (1967) 325–339.

[66] G. Shafer, A Mathematical Theory of Evidence, Princeton University Press,
Princeton, NJ, 1996.

[67] L. Xu, A. Krzyzak, C.Y. Suen, Methods of combining multiple classifiers and
their applications to handwriting recognition, IEEE Transactions on Systems,
Man and Cybernetics 22 (3) (1992) 418–435.

[68] M. Beynon, D. Cosker, A.D. Marshall, Methods of combining multiple classifiers
and their applications to handwriting recognition, Expert Systems with
Applications 20 (4) (2001) 357–367.

[69] Y.A. Aslandogan, C.T. Yu, Evaluating strategies and systems for content based
indexing of person images on the web, in: Proceedings of the ACM
International Multimedia Conference and Exhibition, 2000, pp. 313–321.

[70] K. Sentz, Combination of Evidence in Dempster–Shafer Theory, Technical
Report, Sand 2002-0835.

[71] R. Yager, On the Dempster–Shafer framework and new combination rules,
Information Sciences 41 (1987) 93–137.

[72] L.A. Zadeh, A simple view of the Dempster–Shafer theory of evidence
and its implication for the rule of combination, The AI Magazine 7 (1987)
85–90.

[73] C. Lee, A comparison of two evidential reasoning schemes, Artifical Intelligence
35 (1) (1988) 127–134.

[74] P.L. Bolger, Shafer–Dempster reasoning with applications to multisensor target
identification systems, IEEE Transactions on Systems, Man and Cybernetics 22
(6) (1987) 968–977.

[75] L.I. Kuncheva, J.C. Bezdek, R.P.W. Duin, Decision templates for multiple
classifier fusion: an experimental comparison, Pattern Recognition 34 (2)
(2001) 299–314.

[76] C. Dietrich, G. Palm, F. Schwenker, Decision templates for the classification of
time series, Information Fusion 4 (2) (2003) 101–109.

[77] F.R.J. Kittler M. Ballette, J. Czyz, L. Vandendorpe, Decision level fusion of
intramodal personal identity verification experts, in: International Workshop
on Multiple Classifier Systems, 2002, pp. 314–324.

[78] G. Giacinto, F. Roli, L. Didaci, Fusion of multiple classifiers for intrusion
detection in computer networks, Pattern Recognition Letters 24 (12) (2003)
1795–1803.

[79] J-C. de Borda, Memoire sur les elections au scrutin, Histoire de l’AcadTmie
Royale des Sciences, Paris, 1781.

[80] J. Wilson, P. Gader, Use of the Borda count for landmine discriminator fusion,
in: Proceedings of the SPIE Conference on Detection and Remediation
Technologies for Mines and Minelike Targets IX, 2007, p. 655322.

[81] M.G. Kendall, A new measure of rank correlation, Biometrika 30 (1/2) (1938)
81–93.

[82] M.G. Kendall, B.B. Smith, The problem of m rankings, Annals of Mathematical
Statistics 10 (3) (1939) 275–287.

[83] T. Cover, J. Thomas, Elements of Information Theory, John Wiley and Sons,
1991.

[84] S. Auephanwirayakul, J. Keller, P.D. Gader, Generalized Choquet fuzzy integral
fusion, Information Fusion 3 (1) (2002) 69–85.

[85] J.-H. Chiang, P. Gader, Hybrid fuzzy-neural systems in handwritten world
recognition, IEEE Transactions on Fuzzy Systems 5 (4) (1997) 497–510.

[86] P.D. Gader, B. Nelson, A. Hocaoglu, S. Auephanwiriyakul, M. Khabou, Neural
versus heuristic development of Choquet fuzzy integral fusion algorithms for
land mine detection, in: H. Bunke, A. Kandel (Eds.), Neuro-fuzzy Pattern
Recognition, World Scientific Publ. Co., 2000, pp. 205–226.

[87] M. Grabisch, Fuzzy integral for classification and feature extraction, in: M.
Grabisch, T. Murofushi, M. Sugeno (Eds.), Fuzzy Measures and Integrals,
Theory and Applications, Physica Verlag, 2000, pp. 348–374.

[88] M. Grabisch, A new algorithm for identifying fuzzy measures and its
application to pattern recognition, in: Fourth IEEE International Conference
on Fuzzy Systems, Yokohama, Japan, 1995, pp. 145–150.

[89] M. Grabisch, J. Nicolas, Classification by fuzzy integral: performance and tests,
Fuzzy Sets and Systems 65 (2–3) (1994) 255–271.

[90] K. Xu, Z. Wang, P.-A. Heng, K.-S. Leung, Classification by nonlinear integral
projections, IEEE Transactions on Fuzzy Systems 11 (2) (2003) 187–2001.

[91] A. Temko, D. Macho, C. Nadeu, Fuzzy integral based information fusion for
classification of highly confusable non-speech sounds, Pattern Recognition 41
(5) (2008) 1814–1823.

[92] H. Nemmour, Y. Chibani, Neural network combination by fuzzy integral for
robust change detection in remotely sensed imagery, EURASIP Journal on
Advances in Signal Processing 2005 (1) (2005) 2187–2195.

[93] H. Frigui, Interactive image retrieval using fuzzy sets, Pattern Recognition
Letters 22 (9) (2001) 1021–1031.

H. Frigui et al. / Information Fusion 13 (2012) 161–174 173



[94] M. Grabisch, Modelling data by the Choquet integral, in: V. Torra (Ed.),
Information Fusion in Data Mining, Physica Verlag, Heidelberg, 2003, pp. 135–
148.

[95] M. Grabisch, H. Nguyen, E. Walker, Fundamentals of Uncertainty Calculi,
with Applications to Fuzzy Inference, Kluwer Academic Publishers, Dordrecht,
1995.

[96] A. Mendez-Vazquez, P. Gader, J.M. Keller, K. Chamberlin, Minimum
classification error training for Choquet integrals with applications to

landmine detection, IEEE Transactions on Fuzzy Systems 16 (1) (2008) 225–
238.

[97] A. Mendez-Vasquez, Ph.D. Dissertaion, Information Fusion and Sparsity
Promotion Using Choquet Integrals.

[98] H. Frigui, O. Nasraoui, Unsupervised learning of prototypes and attribute
weights, Pattern Recognition Journal 37 (2004) 567–581.

[99] L. Ayers, E. Rosen, MIDAS: Mine Detection Assessment and Scoring User’s
Manual V1.1, Institute for Defense Analysis, Technical Report, 2004.

174 H. Frigui et al. / Information Fusion 13 (2012) 161–174



Detection and Discrimination of Land mines based on Edge
Histogram Descriptors and Fuzzy K-Nearest Neighbors

Hichem Frigui and Paul Gader

Abstract— This paper describes an algorithm for land mine
detection using sensor data generated by a ground penetrating
radar (GPR) system. The GPR produces a 3-D array of intensity
values, representing a volume below the surface of the ground.
First, a computationally inexpensive pre-screening algorithm is
used to focus attention and identify regions with subsurface
anomalies. The identified regions of interest are then processed
by a feature extraction algorithm to capture their salient
features. We use translation invariant features that are based on
the local edge distribution of the 3-D GPR signatures. Finally,
a fuzzy K-nearest neighbor rule is used to assign a confidence
value to distinguish true detections from false alarms. The
proposed algorithm is applied to data acquired from three
outdoor test sites at different geographic locations.

I. INTRODUCTION

Detection and removal of landmines is a serious problem
affecting civilians and soldiers worldwide. It is estimated
that more than 100 million landmines are buried in more
than 80 countries around the world, and that 26,000 people,
mostly civilians, a year are either killed or maimed by a
landmine [1], [2]. The detection problem is compounded by
the large variety of landmine types, differing soil conditions,
temperature and weather conditions, and varying terrain,
to name a few. Traditional fielded approaches use metal
detectors. Unfortunately, many modern landmines are made
of plastic and contain little or no metal.

A variety of sensors have been proposed or are under
investigation for landmine detection. It is necessary to have
a very high detection rate with a low false alarm rate. The
research problem for sensor data analysis is to determine
how well signatures of landmines can be characterized and
distinguished from other objects under the ground using
returns from one or more sensors. Ground Penetrating Radar
(GPR) offers the promise of detecting landmines with little
or no metal content. Unfortunately, landmine detection via
GPR has been a difficult problem[3], [4]. Although systems
can achieve high detection rates, they have done so at the
expense of high false alarm rates.

Automated detection algorithms can generally be broken
down into four phases: pre-processing, feature extraction,
confidence assignment, and decision-making. Pre-processing
algorithms perform tasks such as normalization of the data,
corrections for variations in height and speed, removal of
stationary effects due to the system response, etc. Methods
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that have been used to perform this task include wavelets
and Kalman filters[5], [6], subspace methods and matching to
polynomials [7], and subtracting optimally shifted and scaled
reference vectors [8]. Feature extraction algorithms reduce
the pre-processed raw data to form a lower-dimensional,
salient set of measures that represent the data. Principal
component (PC) transforms are a common tool to achieve
this task [9], [10]. Confidence assignment algorithms can
use methods such as hidden Markov Models [11], [12], fuzzy
logic [13], rules and order statistics [14], neural networks, or
nearest neighbor classifiers to assign a confidence that a mine
is present at a point. Decision-making algorithms often post-
process the data to remove spurious responses and use a set
of confidence values produced by the confidence assignment
algorithm to make a final mine/no-mine decision.

In this paper, we propose a feature-based algorithm for
land mine detection in GPR data that uses edge histogram de-
scriptors (EHD) for feature extraction and a fuzzy K-Nearest
Neighbors (K-NN) based rule for confidence assignment.
First, an adaptive least mean squares (LMS) pre-screener is
used to focus attention and identify regions with subsurface
anomalies. The identified candidates are processed further
by the feature-based discrimination algorithm to attempt to
separate mine targets from naturally occurring clutter. A
set of alarms with known ground truth is used to train
the decision making process. These alarms are clustered to
identify few representatives. The main idea is to summarize
the training data and to identify few prototypes that can
capture the variations of the signatures within each class.
These variations could be due to different mine types, differ-
ent soil conditions, different weather conditions, etc. Fuzzy
memberships are assigned to the representatives to capture
their degrees of sharing among the mine and clutter classes.

The rest of this paper is organized as follows. Section 2
gives an overview of the GPR data and the LMS detector.
Section 3 describes the different steps of the proposed
detection system. The experimental results are presented in
section 4, and concluding remarks are given in section 5.

II. ANOMALY DETECTION

In this section, we present a brief description of the GPR
data, the pre-processing steps, and the LMS pre-screener. A
more detailed description of these steps can be found in [15],
[14].

A. GPR Data

The input data consists of a sequence of raw GPR sig-
natures sampled by vehicle-mounted antennas as it travels
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Fig. 1. a collection of few GPR scans

forward. The Wichmann GPR of NIITEK is used to collect
24 channels of data. Adjacent channels are spaced approxi-
mately 5 centimeters apart in the cross-track direction, and
sequences (or scans) are taken at approximately 5 centimeter
down-track intervals. The sequence at each cross-track and
down-track position contains 416 time samples (which are
approximately related to depth) at which the GPR signal
return is reported. The collected input data is represented
by a 3-Dimensional matrix of sample values, S(z, x, y), z =
1, · · · , 416;x = 1, · · · , 24; y = 1, · · · , NS , where NS is the
total number of collected scans, and the indices z, x,and y
represent depth, cross-track position, and down-track posi-
tions respectively. A collection of scans, forming a volume
of data, is illustrated in Fig. 1.

B. Pre-processing and the LMS Pre-screener

First, we identify the location of the ground bounce as the
signal’s peak and align the multiple signals with respect to
their peaks. This alignment is necessary because the vehicle-
mounted system cannot maintain the radar antenna at a fixed
distance above the ground. The top part of each signal, up
to few samples beyond the ground bounce are discarded.
The remaining signal samples are divided into N depth bins,
and each bin would be processed independently. The reason
for this segmentation is to compensate for the high contrast
between the responses from deeply buried and shallow
anomalies. Next, an adaptive LMS is applied to the energy
at each depth bin. The LMS assigns a confidence value to
each point in the cross-track, down-track plane based on
its contrast with a neighboring region. The components that
satisfy empirically pre-determined conditions are considered
as potential targets. Their cross-track xs, and down-track ys

positions of the connected component center are reported as
alarm positions for further processing.

(a) (b)

Fig. 2. (a) (depth-downtrack), and (b) (depth,cross-track) views of a sample
mine signature

III. FEATURE-BASED LAND MINE DETECTION

A. Edge Histogram Descriptor

We use a variation of the MPEG-7 Edge Histogram
Descriptor (EHD) [16] as a feature representation of the
GPR signatures. The basic EHD has undergone rigorous
testing and development, and thus, represents one of the
mature and generic texture descriptors. For a generic image,
the EHD represents the frequency and the directionality of
the brightness changes in the image. Simple edge detector
operators are used to identify edges and group them into five
categories: vertical, horizontal, 45o diagonal, 135o diagonal,
and isotropic (non-edges). The EHD would include five bins
corresponding to the above categories.

For the GPR data, we adapt the EHD to capture the spatial
distribution of the edges within a 3-D GPR data volume. To
keep the computation simple, we still use 2-D edge operators,
but we compute two types of edge histograms. The first one
is obtained by fixing the cross-track dimension and extracting
edges in the (depth, down-track) plane. The second edge
histogram is obtained by fixing the down-track dimension
and extracting edges in the (depth, cross-track) plane. Fig. 2
displays a (depth,down-track) plane and a (depth,cross-track)
plane of a sample mine signature. As it can be seen, the
edges in these planes and their spatial distribution constitute
an important feature to characterize the mine signatures.

Let S
(x)
zy be the xth plane of the 3-D signature S(x, y, z).

First, for each S
(x)
zy , we compute four categories of edge

strengths: vertical, horizontal, 45o diagonal, and 135o diago-
nal. If the maximum of the edge strengths exceeds a certain
preset threshold, θG, the corresponding pixels is considered
to be an edge pixel. Otherwise, it is considered a non edge
pixel. Next, each S

(x)
zy image is vertically subdivided into 4

overlapping sub-images S
(x)
zyi , i = 1, · · · , 4. For each S

(x)
zyi ,

we compute a 5 bin edge histogram, H
(x)
zyi , where the bins

correspond to the 4 edge categories, and the non-edge pixels.
The down-track component of the EHD, EHDd is defined as
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Fig. 3. Extraction of the EHD for a 3-D mine signature

the concatenation of 4 five-bin histograms:

EHDd(Sxyz) = [Hzy1Hzy2Hzy3Hzy4 ], (1)

where Hzyi
is the cross-track average of the edge histograms

of sub-image S
(x)
zyi over NC channels, i.e.,

Hzyi
=

1
NC

NC∑
x=1

H(x)
zyi

.

To compute the cross-track component of the EHD, EHDx,
we fix the scans, and compute the 4 edge strengths on the
Sy

zx, y = 1, · · · , NS (depth,cross-track) planes. Since these
planes do not have enough columns (typically <7), they are
not divided into sub-images, and only one global histogram
per plane, Hy

zx, is computed. Then, EHDx is computed as the
down-track average of the edge histograms over NS scans,
i.e.,

EHDx(Sxyz) =
1

NS

NS∑
y=1

H(y)
zx (2)

The EHD of each 3-D GPR alarm is a 25-D histogram that
concatenates the down-track and cross-track EHD compo-
nents, i.e.,

EHD(Sxyz) = [EHDy(Sxyz) EHDx(Sxyz)]. (3)

The extraction of the EHD is illustrated in Fig. 3

B. Training Signatures

The training data consists of a set of alarms reported by the
LMS pre-screener and labeled as mines or false alarms using
the ground truth. The LMS reports the cross-track (xs) and
down-track (ys) position (center of connected component)
of each alarm s. Since the ground truth for the depth value
(zs) is not provided, we visually inspect all mine signatures
and estimate this value. For the false alarms, this process is
not trivial as false alarms can have different characteristics
and their signature can extend over a different number of

samples. Instead, for each reported false alarm, we extract
five equally spaced depths (zs1 , · · · , zs5) covering the entire
depth range.

Each signature s consists of a 30 (depth values) by 15
(scans) by 7 (channels) volume extracted from 7 consecutive
channels extracted from channel xs of the aligned GPR data
and centered at (ys, zs).

C. Clustering the Training Signatures

The signatures within each class are expected to exhibit
significant variations. For instance, clutter signatures can be
caused by different types of buried objects. Similarly, mine
signatures can have multiple subclasses corresponding to
mines of different types and sizes, mines buried at different
depths, different soil and weather conditions, etc. To reduce
the size of the training samples and identify few represen-
tatives that can capture these within-class variations, we use
the self-organizing feature maps (SOFM) [17] to cluster the
mine and false alarms signatures separately. We will refer to
the clusters’ representatives (Ri) as prototypes. We use RM

i

to denote the prototypes of the mine signatures, and RC
i to

denote the prototypes of the clutter signatures.
For further processing, each prototype, Ri, is assigned a

fuzzy membership in the class of mines, uM (Ri), and a
fuzzy membership in the class of false alarms uC(Ri). We
use a minimum distance and a Fuzzy C-Means [18] based
labeling. Specifically, for each Ri, we identify the closest
mine prototype RM

i and the closest clutter prototype RC
i ,

and assign a label using

uM (Ri) =
1/dist(Ri, R

M
i )

1/dist(Ri, RM
i ) + 1/dist(Ri, RC

i )
(4)

D. Fuzzy K-NN based confidence assignment

Each potential target (identified by the pre-screener) is
tested at multiple depth values. We slide a 30×15×7 window
size along the depth axis with a 50% overlap between 2
consecutive signatures. A maximum of 10 signatures are
extracted for each target. For each signature, we compute
the EHD, and use A fuzzy K-NN [19] based rule to assign
a confidence value. Then, the 10 confidence values are
combined using an order statistics (OS) operator [20] to
generate a single confidence value.

TO compute the confidence value for a given test sig-
nature, ST , we compute its distance to all representative
prototypes. Then we sort these distances, and identify the
top K nearest neighbors S1

T , · · · , SK
T . We experimented with

two fuzzy versions of the K-NN. In the first one, we compute
the confidence values using

Conf(ST ) =

∑K
k=1 uM (Sk

T ) × 1
dist(ST ,Sk

T )∑K
k=1 1/dist(ST , Sk

T )
. (5)

In this version, the confidence value depends on the relative
distances of the K nearest neighbors. Relatively close proto-
types will contribute more to the overall confidence value. In
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TABLE I
NUMBER OF METAL AND PLASTIC CASED MINES AND MINE

SIMULANTS AND THEIR BURIAL DEPTHS.

Depth Total
-1” 0” 1” 2” 3” 4” 5” 6”

Metal 12 48 42 121 43 101 4 53 424
Plastic 6 21 8 57 29 24 0 58 203

Simulants 0 0 0 37 18 26 0 0 81

the second verion of the K-NN, we compute the confidence
value using

Conf(ST ) =
K∑

k=1

uM (Sk
T ) × 1

1 + max
(
0,

dist(ST ,Sk
T )−D̄

η

) .

(6)
In (6), the D̄ and η parameters are determined experimentally
using the training data. Eq. 6 can be considered a possibilistic
version of the K-NN, where the overall confidence value
depends on the absolute distance of the nearest neighbors
to the prototypes. Test signatures that are far from all
prototypes, will be assigned low confidence values. This is
not the case if eq. (5) is used.

IV. EXPERIMENTAL RESULTS

The EHD based detector was developed and tested on
GPR data collected from outdoor test lanes at three different
locations. The first two locations, site 1 and site 2, were
temperate regions with significant rainfall, whereas the third
collection, site 3, was a desert region. The lanes are simulated
roads with known mine locations. Lanes at site 1 are labeled
lanes 1, 3, and 4, and are 500 meters long and 3 meters wide.
Lanes at site 2 are labeled lanes 3, 4, 13, 14, and 19, and
are 50 to 250 meters long and 3 meters wide. Lanes at site 3
are labeled lanes 51 and 52, and are 300 meters long and 3
meters wide. All mines are Anti-Tank (AT) mines. Multiple
data collections were performed at each site at different dates
resulting in a total of 708 mine encounters. The number, type,
and burial depth of the mines are given in table I. For all the
10 lanes in the 3 collections, the LMS has identified a total
of 1777 alarms.

The identified alarms were used to train and test the EHD
detector. We use a lane-based cross validations: We use
the alarms of 9 lanes to train and test on one lane. This
process would be repeated 10 times so that each lane is tested
once. For each cross validation, training alarms from 9 lanes
would be partitioned into mine and clutter using the available
ground truth. Then, the self-organizing feature maps (SOFM)
[?] would be used to cluster each group of signatures into
a 10×10 map to identify the representative prototypes. Fig.
4 displays the SOM map of the mine prototypes for one
of the 10 cross validation sets. This map, which includes
97 mine prototypes, represents a summary of about 600
mine signatures. As it can be seen, some of the prototypes
have strong and well-structured signatures, while others have
weak signatures. The fuzzy labels that are assigned to these
prototypes (see eq. (4)) would quantify this variation.

Fig. 4. SOM map of the mine prototype signatures for one training set.

Fig. 5 displays the SOM map of the clutter prototypes
for the same cross validation sets. This map includes 100
prototypes and represents the summary of about 1000 clutter
signatures. As it can be seen, some of the clutter prototypes
(e.g. bottom left corner) resemble the signatures of weak
mine. These prototypes will be assigned low membership
values in the class of mines and would contribute to the
overall confidence value (see eq. (5)). In other words, clutter
signatures that have partial edge structure would be treated
differently from clutter signatures that have high energy but
no structure.

We have experimented with the two K-NN versions,
and we have found that, in general, equations (5) and (6)
yield comparable performance. However, there are few cases
where the test signature (usually clutter) is not similar to
any of the identified prototypes. In this case, the possibilistic
K-NN outperforms the fuzzy K-NN.

The EHD detector was scored in terms of Probability of
Detection (PD) vs. False Alarm Rate (FAR). Confidence val-
ues were thresholded at different levels to produce Receiver
Operating Characteristic (ROC) curve. For a given threshold,
a mine is detected if there is an alarm within 0.25 meters
from the edge of the mine with confidence value above the
threshold. Given a threshold, the PD is defined to be the
number of mines detected divided by the number of mines.
The FAR is defined as the number of false alarms per square
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Fig. 5. SOM map of the clutter prototype signatures for one training set.

meter.
The results of the EHD detector are compared with those

of the pre-screener and with the results obtained using the
HMM detector [11], [12]. Fig. 6 shows the ROCs for all
the passes of the 3 collections. The ROCs are displayed for
the confidence values generated by the LMS prescreener and
the EHD detector. As it can be seen, when compared to
the LMS ROC, the EHD ROC is shifted left (i.e., lower
FAR for the same PD), and shifted up (higher PD for the
same FAR). Thus, one can conclude that the EHD detector
can discriminate between the mine and clutter signatures
identified by the prescreener. In fact, examination of the
confidence values of individual alarms has indicated that the
EHD has increased the confidence values of several ”weak”
mine signatures considerably. Fig. 7 displays samples of
these mine signatures. Similarly, the EHD has reduced the
confidence values of several clutter signatures significantly.
These are usually signatures with high energy content that
don’t have the coherent spatial edge distribution. Fig. 8
displays samples of these clutter signatures.

V. CONCLUSION

In this paper, we have proposed an approach for land mine
detection based on edge histogram descriptor and fuzzy K-
nearest neighbors. In addition to being simple and efficient,
our approach is data driven and thus, could be easily re-

Fig. 6. Comparison of the EHD, LMS, and HMM ROC’s

Fig. 7. Sample mine signatures where the EHD has increased the confidence
values significantly.

trained and adapted to data collected from other sites and/or
with different GPR sensors. The fuzzy labels assigned to the
mine and false alarm representatives help the system assign
soft confidence values that can reflect the ambiguity of the
signatures. This feature is important if the results of the EHD
detector are to be fused with those obtained by different
classifiers. The ROC on data collected from several lanes
at different sites show that the EHD algorithm can reject
several false alarms identified by LMS without affecting the
detection rate.

Fig. 8. Sample clutter signatures where the EHD has reduced the confidence
values significantly.
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Abstract—Ground penetrating radar (GPR)-based discrimina-
tion of landmines from clutter is known to be challenging due
to the wide variability of possible clutter (e.g., rocks, roots, and
general soil heterogeneity). This paper discusses the use of GPR
frequency-domain spectral features to improve the detection of
weak-scattering plastic mines and to reduce the number of false
alarms resulting from clutter. The motivation for this approach
comes from the fact that landmine targets and clutter objects
often have different shapes and/or composition, yielding different
energy density spectrum (EDS) that may be exploited for their
discrimination (this information is also present in time-domain
data, but in the frequency domain we can remove a phase if desired
and can reveal better spatial characteristics and therefore often
achieve greater robustness). This paper first applies the finite-
difference time-domain (FDTD) modeling technique to establish
the theoretical foundation. The method to generate EDS from
GPR measurements is then described. The consistency of the
frequency-domain features is examined through two different
GPRs that have different spatial sampling rates and frequency
bandwidths. Experimental results from several test sites, based on
GPR data collected over buried mines and emplaced buried clutter
objects, corroborate the theoretical development and the effective-
ness of the proposed spectral feature to increase the accuracy of
landmine detection and discrimination.

Index Terms—Energy density spectrum (EDS), finite-difference
time-domain (FDTD) modeling, ground penetrating radar (GPR),
landmine detection.

I. INTRODUCTION

LANDMINE detection has been the subject of several in-
vestigations over the past few years [1]–[36]. The research

is driven not only by need in military operations but also for
humanitarian purposes to clean up minefields left after wars
(minefields are responsible for more than 30 000 deaths and
injuries every year).
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Because landmines are often buried underground, landmine
detection relies on ground-penetrating sensors to capture the
signal response. Perhaps the most popular sensor for landmine
detection is electromagnetic induction, often termed a metal
detector (MD) [8]–[14]. If the landmine casing contains signif-
icant metal, it will typically trigger responses in the MD and
be detected (the MD response drops off as 1/r6 where r is
the target-sensor distance, thus MDs often have difficulty with
low-metal-content mines at significant depths). The MD is also
significantly impacted by the quantity of metal in the target,
with this a significant problem for low-metal-content plastic
mines. Metal detectors also provide limited discrimination ca-
pability, and therefore they suffer from false alarms due to
ubiquitous metal clutter. Many currently developed landmines
are either made of plastic or have very low metal content. As a
result, an MD alone is not able to achieve a high probability of
detection with a correspondingly low probability of false alarm,
and additional sensors are needed. We note that radars are
sensitive to plastic mines if there is sufficient contrast between
the dielectric properties of the mine and the soil. Moreover,
radar signatures fall off as 1/r4.

Ground penetrating radar (GPR) is a sensor modality that
has recently witnessed improved classification performance for
landmine detection [15]–[36]. This improvement in perfor-
mance has been manifested by improved electronics (e.g., wider
bandwidth and better antennas) and enhanced signal-processing
architectures. GPRs may operate in the time or frequency
domains. One must balance the desire for significant ground
penetration ability, which necessitates low frequencies, with
the desire for spatial resolution, which requires wider band-
widths. Many current systems operate from a lower frequency
of approximately 0.5 GHz to upper frequencies approaching
10 GHz.

The GPR signal from a landmine is dependent on the mine’s
size, shape, and composition, as well as its burial depth and
orientation. In addition to the properties of the mine itself,
electrical characteristics of the soil also play an important role
on the signature of landmines and clutter. For example, if the
dielectric constant of the mine and soil are similar, the electrical
discontinuity manifested by the mine–soil heterogeneity may
be small, yielding a weak landmine signature. To address
this problem, one may lower the detection threshold, thereby
increasing the probability of detecting mines with weak signa-
tures; however, this typically will cause a significant increase in
the number of false alarms.

0196-2892/$25.00 © 2008 IEEE
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Rather than simply using the (often weak) signature am-
plitude to perform detection of landmines, one may consider
exploiting the spectral properties of the signature to use poten-
tial mine-specific features. In our paper, we perform classifica-
tion based on spectral features extracted from the entire GPR
waveform signature. The rationale to exploit the spectral char-
acteristics for classification is that landmine targets and clutter
objects often have different shapes as well as composition,
which yields different amounts of energy return at different
frequencies, and hence different energy density spectra. It is
well known to the electromagnetics community that the entire
scattered waveform (A-scan) from a target illuminated by an
ultrawideband pulse conveys signature information. Particu-
larly for stationary landmine targets in clutter environment,
it is essential that no signature information is excluded. We
therefore apply the entire signature waveform when generating
the spectral characteristics of a target.

As indicated above, the A-scan signature waveform of a
landmine (or general target) is characteristic of the target itself
and is source independent (although the strength of the radar
return may vary with a changing source). However, one must
view the landmine and surrounding soil medium as a composite
target. For a fixed landmine, the characteristics of the signature
waveform change with variable surrounding soil properties
and for variable mine positions (e.g., depth and orientation).
Depending on orientation, the target looks very different, and
one target may look like another if the orientations are changed.
This may present a significant challenge, due to changing soil
properties with time and space and due to different target burial
properties. To examine the significance of this issue in detail,
we perform numerical simulations with a three-dimensional
finite-difference time-domain (FDTD) numerical model [37].
The accuracy of the FDTD model is first validated by com-
paring it to measured data from actual plastic mines. FDTD is
subsequently employed to examine the spectral characteristics
of mines as a function of target depth and soil properties.
Based on the insight accrued from this modeling, we observe
that the spectral signature is relatively robust to changing
environmental conditions, motivating its use subsequently for
landmine detection. We use here the energy density spectrum
(EDS) to obtain the spectral characteristics. Its features are then
deduced from EDS to improve landmine detection and clutter
discrimination. Furthermore, fusion results with time-domain
features are also provided to demonstrate the advantages and
usefulness of the proposed EDS spectral feature technique. Ex-
tensive experimental results corroborate that the proposed EDS
technique significantly improves the detection performance of
landmines, especially in the presence of various clutter objects
such as pieces of woods, rocks, plastics, and metal debris.

We have searched through the literature and have not found
any previous work on using the spectral characteristics from
GPR measurements over a target for landmine and clutter
discrimination. Some researchers have investigated the use of
complex natural resonance in the GPR late-time response for
the classification of unexploded ordnances (UXOs) [38]–[40].
The complex resonance frequencies are estimated from the
late-time response using the parametric estimation technique,
and the estimated resonance frequencies are used for UXO

classification. Our work focuses on landmine and clutter dis-
crimination, using a different approach and methodology. In
particular, we use the entire time response from the GPR
measurement instead of the late-time response only to create the
EDS. Furthermore, the proposed technique uses the shape in the
EDS between landmine and clutter objects for discrimination,
and it does not estimate resonance frequencies.

The paper is organized as follows. Section II discusses the
FDTD technique to model plastic mine targets and derives
their theoretical spectral characteristics. Section III presents
procedures to generate EDS from GPR data measurements.
Section IV contains the experimental results using the data with
buried landmines as well as clutter objects that are collected
from several test sites at different geographic locations with
different soil types. The conclusions from this study are sum-
marized in Section V.

II. FDTD MODELING

This section applies the FDTD modeling of weak-scattering
plastic landmines. The FDTD helps us understand the phenom-
enology that produces the distinct spectral characteristics of
some weak-scattering plastic landmines and provides a good
tool for us to analyze how the spectral characteristics are
affected by the background-soil electrical parameters such as
soil conductivity and dielectric constant. It also assists in the
design of the spectral mask for the proposed algorithm for
landmine and clutter discrimination.

The FDTD is a widely applied electromagnetic modeling tool
appropriate for analyzing general three-dimensional scattering
and radiation problems [37]. We apply it here to synthesize
the electromagnetic signature of three-dimensional buried land-
mines. The antenna system used in the simulations is similar
to that investigated in [37] and [41], and therefore no further
details of the antennas are provided here. Measurements were
performed with a time-domain GPR system operating over the
0.5–8 GHz frequency band, with a design analogous to that
in [37] and [41]. For a system with such a wide bandwidth,
it is essential to model the detailed internal components of a
plastic landmine (this is obviously not important for metal-
cased mines, for which there is little, if any, electromagnetic
penetration). To perform such modeling, we referred to Jane’s
Ammunition Handbook for the characteristics of mines [42].
Jane’s gives cross-sectional dimensions of the internal compo-
nents of landmines, as well as photographs. Using these data,
and knowledge of the electromagnetic properties of typical
plastics, we approximated the internal components of the land-
mine within the FDTD model. In the subsequent discussion,
we do not give the name of the explicit mines considered in
these studies for security reasons. However, we do characterize
the general mine properties (e.g., dimensions). Details on many
such mines may be found in [42].

The first curve in Fig. 1 is the FDTD-computed frequency-
domain signature (magnitude) for a moderately size circular
plastic antitank mine (height: 11.5 cm, diameter: 23 cm).
Frequency-domain signatures are also shown in Fig. 1 and
were obtained from measured data that were collected at a
test facility at a temperate site. The mine in Fig. 1 was buried
at a depth of approximately 10 cm from the top of the mine
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Fig. 1. Spectral characteristics of a plastic landmine. The top curve is from
FDTD modeling, and the rest of the curves are from measurements.

to the soil interface, and the soil properties are εr = 3 and
σ = 0.05 S/m from on-site measurement. The six measured
frequency-domain signatures come from the same type of mine
but are different and therefore have variation.

The results for another mine type is presented in Fig. 2, where
the first curve is from FDTD modeling, and the rest of the
curves are from data measurements. This is a relatively large
plastic antitank mine (height: 7 cm, diameter: 31 cm), and the
top of the mine was buried flush to the soil interface. The soil
properties in this case are εr = 5.5 and σ = 0.01 S/m via on-
site measurement when the data were collected. Again, the six
curves from the data measurement came from the same type
of mine but from different mines, which contributes to their
variation. In the results presented in Figs. 1 and 2, the sensor
is situated above the center axis of the mine (the end of the
antenna is 5 cm from the interface). The curves in the two
figures are translated with −0.5 decrements for purposes of
comparison, and the absolute scale in the y-axis does not have
meaning.

The comparison in Figs. 1 and 2 is typical of what we have
observed from field data for actual plastic landmines (these
are not “sandbox” laboratory measurements but rather GPR
measurements of actual mines emplaced in test lanes over many
years). In the two figures, the theoretical spectrum is on the
top and the rests are measurements. The theoretical results
match the measurement results very well. Note that both the
measured and computed data are characterized by peaks in
the frequency-domain magnitude spectra. These spectral peaks
are attributed to the reflective scattering from the target. When
Fig. 1 is examined carefully, it is realized that the measured
frequency-domain signatures vary significantly in the high-
frequency region above 3 GHz. However, the signatures have
more consistency in the region between 1 to slightly above
2 GHz. We have a similar observation for Fig. 2.

Fig. 2. Spectral characteristics of another plastic landmine. The top curve is
from FDTD modeling, and the rest of the curves are from measurements.

To compare the theoretical signature with the measured ones,
we use the following metric correlation coefficient:

ρAB =
∑

i A(fi)B(fi)√∑
i A(fi)2

√∑
i B(fi)2

where A(fi) and B(fi) are the two frequency-domain signa-
tures to be compared. The correlation coefficient is equivalent
to the mean-square error measure when the two frequency
domain signatures have been normalized to unity energy. The
correlation coefficient allows us to compare the shape of the
two signatures and ignores the effect in the returned energy
strength. The correlation coefficient is between −1 and 1. The
closer its value to one, the higher the similarity between the two
signatures A(fi) and B(fi).

The correlation coefficient values when setting A(fi) to be
the theoretical one and B(fi) to be the measured signatures are
[0.94 0.93, 0.90, 0.92, 0.91, 0.93] for the signatures in Fig. 1,
and are [0.90, 0.94, 0.95, 0.93, 0.93, 0.93] for the signatures
in Fig. 2. These values are very close to unity, indicating high
similarity between the theoretical model and the measurements.

The two mine types in Figs. 1 and 2 show some different
spectral characteristics, which motivates us to consider the
use of spectral features to design a classifier. One feature to
be noted is that when using EDS for landmine classification,
the GPR should have a high-enough frequency resolution to
provide a high-quality spectrum of a target. Furthermore, the
measured EDS from one mine type should have a much smaller
variance compared to the difference in the EDS between two
different mine types. This dictates a very-well-controlled GPR
measurement and a very stable environmental condition that are
often not achievable in practice. However, as illustrated toward
the end of Section III, our study finds that the EDS between
landmine and some clutter objects have very large differences
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Fig. 3. Spectral characteristics of the plastic landmine as shown in Fig. 1
buried at different depths.

(small correlation coefficients). As a result, the EDS is found
to be quite useful for providing some discrimination ability
between landmine and clutter objects.

Having demonstrated the accuracy of the three-dimensional
FDTD model by comparing it to measured data, we now
exercise the model to perform studies that would be difficult to
replicate experimentally. All results presented in the subsequent
discussion are for the landmine considered in Fig. 1, and the
results are representative of results we have found for numerous
buried plastic landmines. In Fig. 3, we consider the same mine
and soil properties as considered in Fig. 1, but now results are
presented as a function of target depth (as measured from the
top of the mine). The sensor is situated above the center axis of
the mine when generating the frequency spectra. The spectra in
Fig. 3 are shifted vertically so that they can be compared with
each other, and the absolute scale in the y-axis does not have
meaning. We observe in Fig. 3 that the frequency-dependent
signature of the mine (amplitude) is relatively insensitive to the
target depth, for fixed soil properties. In fact, the correlation
coefficients for the spectra in Fig. 3 are ρ12 = 0.99, ρ13 = 0.96,
ρ14 = 0.95, ρ23 = 0.97, ρ24 = 0.96, and ρ34 = 0.99, where the
spectra are numbered in the order as they appear. Although
the composite mine–soil target changes with variable depth, the
properties of the soil surrounding the mine do not (only the
distance from the mine to the interface changes). The spec-
tral peaks associated with a plastic mine may be attributed
principally to multiple reverberant scattering within the mine
itself and are apparently not sensitive to the surrounding soil
properties, although the surrounding soil will change the reflec-
tion intensity. We now examine the effect of background-soil
electrical parameters on the spectral characteristics of plastic
landmine. In Fig. 4, we present results for the same plastic
antitank landmine as considered in Fig. 3, buried with the
top of the mine flush with the soil interface and the sensor
centered over the mine as discussed above. Again, the spectra
in Fig. 4 are shifted vertically for the purpose of comparison,
and the absolute scale in the y-axis does not have meaning. In
these examples the soil conductivity is fixed at σ = 0.05 S/m
and the dielectric constant is varied to three values: εr = 2.5,

Fig. 4. Spectral characteristics of the plastic landmine as shown in Fig. 1 with
different dielectric constants in the soil.

εr = 4.5, and εr = 7.5. The internal components of the mine
are composed principally of plastic (εr = 2.5) and air pockets,
and typically the dielectric constant of the explosive is close to
that of a plastic. Therefore, there is substantial variation in the
electrical contrast between the mine and soil for soil permittiv-
ity εr = 7.5 and far less contrast for εr = 2.5. The correlation
coefficients of the curves are found to be ρ12 = 0.97, ρ13 =
0.94, and ρ23 = 0.97, where the curves are numbered in the
order as they appear. The correlation coefficients values are
quite close to one, indicating a high similarity among them.

We observe from Fig. 4 that the spectral properties of the
landmine vary as a function of changing soil properties. The
variation in the spectra that is above 2.5 GHz is quite significant
as the dielectric constant ε increases. The variation in the spec-
tra is less, or the spectra are more stable when the frequency is
below 2.5 GHz. This observation also appears in Fig. 3 as the
depth of the landmine increases. Consequently, when using the
spectra to improve the detection of a weak-scattering landmine,
more emphasis should be placed on the frequency region below
2.5 GHz. Also, the shape of the spectra would be preferable to
the spectral peak frequencies as the spectral peak frequencies
tend to vary significantly.

Finally, we note that in Fig. 4 when comparing the spectrum
with soil εr = 2.5, the spectrum with soil properties εr = 7.5
is more different than that for εr = 4.5. Consequently, one
would expect that the spectrum should deviate even further
from the εr = 2.5 case as the dielectric constant of the soil
increases, for example, to εr = 15. In this case, one may not
expect a single spectrum to cover all soil conditions. In our
work, we have not seen many cases for which the soil was
characterized by εr = 15. In such cases, we would most likely
condition the expected mine spectrum on the prior knowledge
of the soil wetness (e.g., after a significant rain, the algorithm
would expect the spectrum to be closer to εr = 15, whereas
for more typical conditions, a nominal spectrum at (or around)
εr = 2.5 may be used). This would involve a modification of
the basic detection algorithm presented here, for which multiple
spectra may be considered based on the prior knowledge of soil
wetness.
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Based on an extensive set of measured data like that in
Figs. 1 and 2, and computed data like that in Figs. 1–4, we
have observed that the spectral signatures of landmines vary but
are relatively robust to variations in the target depths and soil
conditions. This is because the energy for a plastic landmine is
reverberating principally within the mine, and therefore we still
have observed relative robustness of this feature to changing
depths and soils. We therefore feel that the spectral characteris-
tics of landmines, particularly plastic landmines, constitute an
important classification feature. However, we emphasize that
this feature is only useful when placed in the context of other
features extracted from the GPR signature. We do not advocate
detection and classification of landmines based on the spectral
GPR feature alone. As demonstrated in the results presented
below, when used as one of several features, the spectral
characteristics has proven to provide important classification
enhancement using measured field data.

III. ESTIMATION OF EDS FROM GPR DATA

This section describes a methodology to generate the EDS
from the GPR response of a target. The aim is to exploit
the EDS to improve the detection of weak-scattering plastic
landmines and the discrimination between mine target and
clutter objects.

The spectral characteristics of weak scattering plastic land-
mine described in the previous section are found through FDTD
modeling. The actual GPR measurements contain ground re-
flection, background response, and random behavior. Signal
processing is therefore necessary to estimate the EDS and
obtain the spectral features. We shall first describe the EDS
estimation technique. The EDS estimation is based on the peri-
odogram approach [43], and the periodogram is averaged over
a spatial window to reduce the estimation variance. To illustrate
the consistency of the landmine spectral characteristics and
the robustness of the proposed EDS estimation method, the
EDS estimator will be applied to two different GPRs. One is
wideband pulse-excited radar for a vehicle-mounted system,
and the other is a frequency swept handheld system. The former
collects data in the time domain and the latter in the frequency
domain. The data can be made equivalent if they have the
same bandwidth and resolutions in both time and frequency.
However, compared to the first GPR, the second has a smaller
bandwidth and higher frequency resolution.

In a typical landmine-detection strategy, a prescreener is
first applied to indicate the potential locations of mine targets.
More sophisticated processing is then followed to affirm if the
location has a mine target, to reduce the probability of false
alarm (Pfa). The prescreener algorithm has the attribute of high
location accuracy and a 100% probability of detection (Pd) with
moderate Pfa. Many prescreener algorithms are available; some
popular ones include the least mean squares algorithm [44], the
constant false alarm rate (CFAR) algorithm [45], principal com-
ponents analysis (PCA) [46], and correlation detector (CorrDet)
[47]. The EDS and the spectral features will be generated on the
alarm locations declared by a prescreener, which contain either
mines or clutter.

The GPR data at cross-track position x and down-track
position y is denoted as d(x, y, z), where z represents depth.

Fig. 5. Section of GPR B-scan that contains a mine target.

A highly simplified data model is shown as follows:

d(x, y, z) = g(x, y, z) + s(x, y, z) + w(x, y, z) (1)

where g(x, y, z) represents the ground bounce reflection,
s(x, y, z) denotes the landmine target or clutter object response,
and w(x, y, z) represents the noise. Fig. 5 shows a section of
B-scan GPR data that contains a mine in the middle, where the
horizontal axis is the down-track and the vertical axis is the
depth. The color (gray level) represents the intensity of the GPR
signal return. The strongest returned GPR signal is from the
ground reflection. For simplicity, we shall call the data collected
at surface position (x, y) along the depth a vector sample.

The generation of the EDS contains the following steps: (A)
data preprocessing to remove ground reflection, (B) nonlinear
smoothing to reduce noise, (C) spectral domain whitening
normalization and contrast enhancement, and (D) estimation of
spectrum. To evaluate the proposed method in discriminating
between mine and clutter objects, a single confidence value will
be generated based on the matched filter approach. The details
of the different steps are described below.

A. Preprocessing

The purpose of the preprocessing step is to remove the
component g(x, y, z). Various techniques to remove the ground
effect are available. Here we briefly describe two popular
approaches that we will use later.

The first approach is based on range-gating [45]. It estimates
the ground level, aligns the data, and processes the data at some
distance below the ground only. The depth at which the ground
level occurs in a vector sample is estimated as the average in
which the maximum and minimum values occur. Data align-
ment is then applied so that the ground level at each vector
sample always occurs at the same place. Only the data at some
distance below the ground level are kept for further processing.
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The second approach uses the linear-prediction (LP) model
to subtract out the ground response [47]. It assumes that
the background response at the current vector sample can
be formed as a weighted sum of the past few background
vector samples. The weighting coefficients (LP coefficients)
are different at each sample location and are obtained by the
maximum likelihood optimization. The preprocessed vector
sample is the difference between the current vector sample and
the one based on the background LP model. If the ground level
varies significantly, appropriate shifting for ground alignment
is needed before computing the LP background estimate for
subtraction. The optimum shift in the current vector sample is
normally determined in conjunction with the LP coefficient es-
timation. The LP approach is found to be particularly attractive
for handheld GPR systems.

B. Nonlinear Smoothing

Median filtering is applied to each B-scan of the pre-
processed data to remove internal GPR noise and any other
transient noise. The median filter is 1-D, and the filtering is
performed at each depth bin separately.

C. Whitening

The GPR transmit-receive pairs are different at different
cross-track positions. The purpose of the whitening step is to
remove the internal coupling between the GPR transmit-receive
pair and to whiten the background. The internal coupling is
relatively constant over different scans for the same GPR
transmit-receive pair and is not the same for different GPR
transmit-receive pairs. Furthermore, because the GPR operates
at a very high frequency in the order of the GHz range,
the background data statistics and the internal noise could be
slightly different in different GPR transmit-receive pairs. As a
result, whitening is performed for each cross-track separately.

After median filtering, the fast Fourier transform (FFT) is
applied on each vector sample along depth. Let (xo, yo) be
the current location of interest. The FFT data before and after
the scan at (xo, yo) are used to compute the mean mD(xo, kz)
and standard deviation σD(xo, kz) of the background for
normalization

mD(xo, kz) =
1

2L


 yo−G−1∑

i=yo−G−L

D(xo, i, kz)

+
yo+G+L∑

i=yo+G+1

D(xo, i, kz)


 (2)

σ2
D(xo, kz) =

1
2L


 yo−G−1∑

i=yo−G−L

|D(xo, i, kz)|2

+
yo+G+L∑

i=yo+G+1

|D(xo, i, kz)|2



− |mD(xo, kz)|2 (3)

where D(xo, y, kz) represents the FFT data at position (xo, y),
|(∗)| is the absolute value of (∗), and kz is the frequency-domain
index. Note that mD(xo, kz) is complex and that σ2

D(xo, kz) is
real. G is the number of guard samples, and L is the number
of scans before and after the current location over which to
perform averaging. The whitening step is to minimize the effect
of soil condition on the EDS of a mine target. When the
soil environment is relatively stationary, increasing L can give
better background estimate and, hence, better results.

Normalization is then applied to the scans from yo − G to
yo + G, at every frequency bin kz

D̃(xo, y, kz) =
(

D(xo, y, kz) − mD(xo, kz)
σD(xo, kz)

)
,

y = yo − G, yo − G + 1, . . . , yo + G. (4)

After whitening, following next is contrast enhancement by
removing local mean and semithresholding. The mean and
mean-square values of D̃(xo, y, kz) over y = yo − G, yo −
G + 1, . . . , yo + G are computed:

m
D̃

(xo, kz) =
1

2G + 1

yo+G∑
y=yo−G

D̃(xo, y, kz) (5)

ν2

D̃
(xo, kz) =

1
2G + 1

yo+G∑
y=yo−G

∣∣∣D̃(xo, y, kz)
∣∣∣2 . (6)

We then subtract out m
D̃

(xo, kz) from D̃(xo, y, kz), take
the absolute value and square, and apply semithresholding at
ν2

D̃
(xo, kz), i.e., (7), shown at the bottom of the page. The

semithresholding step is to improve the contrast of the EDS
estimate and the semithreshold value corresponds to the mean
of the background spectra, assuming that the background data
is Gaussian distributed. The resultant data U(xo, y, kz) is a 2-D
matrix with respect to y and kz . This same procedure is repeated
to generate U(x, y, kz) at other cross-track locations (other x
values).

U(xo, y, kz) =



∣∣∣D̃(xo, y, kz) − mD̃(xo, kz)

∣∣∣2 , if
∣∣∣D̃(xo, y, kz) − mD̃(xo, kz)

∣∣∣2 ≥ ν2

D̃
(xo, kz)

0, if
∣∣∣D̃(xo, y, kz) − m

D̃
(xo, kz)

∣∣∣2 < ν2

D̃
(xo, kz)

(7)
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D. Spectrum Generation

The spectrum is generated by averaging U(x, y, kz) over a
square window of N samples in cross-track and N samples in
down-track

P (xo, yo, kz) =
1

N2

xo+(N−1)/2∑
x=xo−(N−1)/2

yo+(N−1)/2∑
y=yo−(N−1)/2

U(x, y, kz).

(8)

Depending on the nature of the data, it is sometimes beneficial
to apply median filtering along the cross-track on U(x, y, kz)
before averaging to form the EDS P (xo, yo, kz). The averaging
is to reduce the variance in the EDS estimate [43].

E. Spectral Confidence Value

Normally, a spectral feature vector will be produced from
the EDS, and it will be used in conjunction with other features
obtained in the depth domain to form a detection confidence
through an appropriate fusion algorithm. In our study, we gen-
erated a confidence value based on the spectral feature vector
alone to examine the effectiveness of the EDS in improving
mine detection.

There are many ways to obtain a feature or feature vector
from the EDS. Described below is just one possible method.
Other techniques for generation of the feature vector and con-
fidence value may be more appropriate and give better results,
depending on the specific GPR used.

We shall collect P (xo, yo, kz) along kz to form a spectral
feature vector and call it Q. Depending on the application and
the specific GPR, it may be necessary to reduce the number of
elements in Q. A single-feature confidence value is generated
using the matched-filter approach. If we use the vector W
to denote the matched filter (after time is reversed), then the
spectral correlation feature (SCF) confidence value is

SCF = log(WT Q + 1). (9)

The logarithm operation is a nonlinear technique used to com-
press the dynamic range of the detection confidence value. The
matched filter W is extracted from the weak-scattering plastic
mines, either based on training data or the theoretical EDS.

We shall now apply the EDS generation technique to two
different radars. The two radars are from two different manu-
facturers and have different characteristics.
GPR System-1: The prototype GPR system-1 is a vehicle-

mounted system for which the GPR sensor is attached to the
front of a vehicle [48]. The GPR is a pulse-excited system
that measures data in the time domain. The start and stop
frequencies of the radar are 200 MHz and 7 GHz, and the
sampling rate is 62 GHz. A vector containing 415 data points
is collected in each physical location on the ground surface.
Because the bandwidth is quite wide, this radar provides a
very high resolution in depth. On the other hand, the frequency
resolution is low due to the high sampling frequency, and it has
a value of

FreqResolution =
62 × 109

415
= 150 MHz. (10)

Fig. 6. EDS of three different types of plastic antitank landmines that are
known to be difficult to detect. (a) Type-1. (b) Type-2. (c) Type-3.

The GPR data are collected as the vehicle proceeds at every
5 cm down-track and 5 cm cross-track. The CFAR prescreener
algorithm [45] processes the data sequentially, and the proposed
EDS technique is applied at all declared alarm locations.

The range-gating preprocessing method [45] is used. Pixel-
level shifting (not subpixel level) is sufficient to align the data
with respect to a global ground level because the radar has
a very high sampling frequency. Only the data starting from
25 depth bins below the ground surface is kept for further
processing. In nonlinear smoothing, the length of the median
filter is 5, which translates to 25 cm because the vector samples
are collected at every 5 cm. Zero padding is used to adjust
the size of each vector sample to 512 points before applying
the FFT. The whitening process uses G = 6 guard samples
(a distance of 30 cm from the alarm location) and L = 6 for
background samples. The averaging area in spectrum genera-
tion is 25 cm by 25 cm, which corresponds to N = 5.

Fig. 6 shows the EDS of three different types of plastic
antitank mines: Type-1, Type-2, and Type-3. A Type-1 mine
is smaller than the other two types. The Type-1 mine is the
same landmine that produces the results in Figs. 1–4. All
three mine types are known to have weak scattering and are
difficult to detect. An interesting observation is that the EDS
from these mines have well-defined spectral peaks, albeit of
different amplitudes. The location of the spectral peak in the
Type-1 mine is at about 1.6 GHz, whereas that for Type-2 and
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Fig. 7. EDS of three clutter objects. (a) Metal clutter with more than 40 g of
metal content. (b) Another metal clutter with more than 40 g of metal content.
(c) Piece of irregular plastic.

Type-3 mines is about 1.2 GHz. The spectral peak frequency
locations are consistent with the first spectral peak location in
the theoretical study given in Section II (see Figs. 3 and 4).
The spectral peaks at higher frequencies are not as apparent
as in the theoretical study. There are two explanations. First,
frequency normalization, or whitening, is performed when the
EDS (Section III-C) is generated. The background response has
larger variations in high frequencies so that the peaks at high-
frequency locations are suppressed after whitening. This is not
considered to be a disadvantage from the proposed EDS estima-
tion method because the high-frequency peaks are less reliable
and therefore have relatively small impact in improving per-
formance. Second, the results shown in Figs. 1–4 are obtained
when the radar signal is impinging perpendicular to the target
at the center. The spectrum generation step in Section III-D
performs averaging over a cross-track by down-track window to
reduce estimation variance, whereas the scans within the spatial
window have different radar incident angles with respect to the
target. As a result, averaging could reduce the high-frequency
peaks.

Fig. 7 shows the EDS of three different clutter objects.
Clutter objects 1 and 2 have a metal content larger than 40 g but
have different shapes, and object 3 is a piece of irregular plastic.
These clutter objects have different shapes and compositions
than a mine target; they are also shown in Fig. 7. The clutter

objects all have a strong GPR energy return. Interestingly
though, their spectra have shapes quite different from those of
the mines, especially in clutter objects 1 and 3. As a result,
it is expected that the EDS will be useful in increasing the
detection of some weak-scattering plastic mines, and at the
same time providing discrimination ability between mine and
clutter objects. It should be noted that there is a limit to
which the EDS can be provided in the discrimination between
landmine and clutter objects.

The shape of the EDS is resulted from a target’s height,
shape, and composition. It is, therefore, difficult to distinguish a
mine from a clutter object using the EDS if the clutter object has
similar height, shape, or composition as a landmine. Based on
our experiments and data collection, a soda can could create an
EDS similar to that of a mine, and the EDS of irregular plastics
and pieces of wood can be distinguished from that of a mine
more easily. How well we can distinguish a mine with a clutter
could largely depend on the probability of detection. We may be
able to distinguish a certain type of mine with clutter relatively
well by setting a high detection threshold, but the probability
of detection over a variety of mine types could be very low
because the EDS from different mines have variations, and the
EDS of the same mine type could also vary under different
orientations and environmental conditions. On the other hand,
most mine fields have limited types of landmine targets. If some
prior knowledge is available about the few types of landmines
to detect, an algorithm using EDS can be “tuned” to detect these
certain types of targets to improve the discrimination between
landmines and clutter objects.

Fig. 8 gives the EDS of clutter objects with different levels
of metal content. The first one has less than 3 g of metal, the
second one has 3–10 g, and the third one has more than 40 g.
The images of the three clutter objects are also shown in the
figure. When the levels of clutter increase, the magnitude of the
EDS increases. This is because the area under the EDS curve
corresponds to the total energy return of the clutter objects.
However, increasing the clutter level will not give spectral
characteristics similar to a landmine.

The consistency of the landmine spectral characteristics and
the robustness of the proposed EDS generation technique are
illustrated in Fig. 9, which shows the EDS of Type-1 landmines
derived from the data collected at three different sites. Site-1
has dry soil in an arid climate, and the soil types of Site-2
and Site-3 contain both dirt and gravel in a temperate climate.
The three sites are geographically separated in different parts
of the United States. In each site, three EDS are shown that
correspond to the Type-1 mines at different depths. The nine
EDS are from different Type-1 mines. Within each site, the
EDS are very similar and insensitive to the depth of the mine
targets as anticipated from the theory. Among the different
sites, the EDS are quite consistent, although the three sites have
significant different soil characteristics.

We have computed the correlation coefficients for spectra in
Fig. 9, and they are shown in Table I. Element (i, j) in the
matrix is the correlation coefficient between EDS i and EDS
j, where the EDS are numbered in their order of appearance
in Fig. 9. To take into account the slight shift in the EDS peak
location, the correlation coefficients within a shifting range of
±480 MHz in EDS j is computed, and the maximum of them is
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Fig. 8. EDS of clutter objects by varying amounts of clutter. (a) Metal clutter
with less than 3 g of metal. (b) Metal clutter with 3–10 g of metal. (c) Metal
clutter with more than 40 g of metal.

the value given in the matrix. The matrix has unity in the main
diagonal as expected. The smallest value in the matrix is 0.84,
which is considered close to 1. Because of the relatively small
number of vector samples available (only 25) in estimating the
EDS, the spectral peak locations in EDS tend to drift slightly,
even for the same type of landmines as depicted in Fig. 9(c).
The EDS may also vary a little due to different soil conditions
(see Fig. 9) and the varieties of plastic mine types. To take
these factors into account, and to increase the robustness of the
proposed technique, the spectral energies at different frequency
bands will be used to form the spectral feature vector. The size
of each frequency band is set to 600 MHz. Hence, there will be
ten spectral features over the frequency range up to 6 GHz. Note
that the FFT size is 512, and the sampling frequency is 62 GHz.
The frequency bin size is therefore 62/512 = 120 MHz, and
each frequency band covers 600/120 = 5 frequency samples.
The frequency bands are decomposed by using a cosine square
window.

To be more specific, the jth spectral feature is generated by

Q(xo, yo, j) =
(M−1)/2∑

i=−(M−1)/2

P (xo, yo, Bj + i) cos2
( π

M
i
)
(11)

Fig. 9. EDS of a Type-1 mine at three different test sites that are geographi-
cally separated with different soil conditions. (a) Mine depth at Site 1 is 5.1 cm
(above), 7.6 cm (middle), and 12.7 cm (bottom). (b) Mine depth at Site 2 is
5.1 cm (above), 7.6 cm (middle), and 10.2 cm (bottom). (c) Mine depth at
Site 3 is 0 cm (above), 5.1 cm (middle), and 10.2 cm (bottom).

where B is the frequency subband size that is set to 5, and M is
the window width and is equal to M = 2B − 1. There is 50%
overlap between the two adjacent subbands, and j takes values
from 1 to 10. The collection of Q(xo, yo, j) with respect to j
forms the 10-element feature vector Q.

To generate a test statistic, a matched filter is designed to
match with the Q values computed in (11). The matched filter
is derived by computing the average of 15 EDS measured at
a test site for a Type-1 landmine buried at depths between 5.1
to 12.7 cm, and the filter coefficients are rounded to a single
digit. The EDS were normalized with the maximum value equal
to one before subbanding and averaging. The values above
3 GHz were set to zero in the subband-averaged EDS because
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TABLE I
MAXIMUM VALUES OF THE CROSS-CORRELATION COEFFICIENTS

FROM THE ENERGY DENSITY SPECTRA IN FIG. 9

the EDS vary significantly above 3 GHz, and the EDS values
above 3 GHz is not reliable. The resulting matched filter is

W = [0.2, 0.4, 1, 0.4, 0.2, 0, 0, 0, 0, 0]T . (12)

It has the largest value at 1.5 GHz and has nonzero values over
the frequency range up to 3 GHz.

The design of W should be based on physical derivations
or an extensive data collection. A better design of the matched
filter could yield a better result. We would like to point out
that with sufficient amount of data for different weak-scattering
landmines, clustering technique could be used to obtain several
matched filters, instead of one, to improve performance.

To design a better classifier that uses EDS features, we
shall look into the resampling techniques such as jackknife
and bootstrap [49]–[51], to deduce the knowledge about the
statistical distributions of landmine EDS for classification. We
also plan to examine the use of some robust classification
techniques [52], [53] to improve the classifier design.
GPR System-2: The GPR System-2 is a handheld based

system where the GPR sensor is attached to the tip of a hand-
held unit. It is a frequency-swept radar, and the bandwidth is
1.4 GHz only, from 1.1 to 2.5 GHz. However, it has a
much higher frequency resolution of 20 MHz, which is about
7.5 times larger than the vehicle-mounted radar. The spatial
sampling spacing is also denser, in which about 160 samples
were collected in 50 cm.

Initially, the operator sweeps the detector back and forth in
the cross-track direction while moving forward to collect the
GPR data. The PCA-based prescreening algorithm [46] is used
to generate initial declarations of a potential mine target. Once
a potential mine target location is identified, the detector will
go to the discrimination mode where the operator will stand
still and sweep the detector back and forth over the alarm
center to collect more data to ascertain if this location contains
a landmine target. The EDS technique will be applied to the
discrimination mode data in each sweep separately.

Fig. 10. EDS of the same three plastic antitank mines as in Fig. 6, where the
data were collected by the handheld radar that had a different bandwidth and
sampling frequency.

In the EDS generation, preprocessing uses the LP technique
[47] to remove the ground reflection. The nonlinear smoothing
uses a size 15 median filter. The size is larger than that used
in the previous GPR because of denser spatial sampling in the
handheld system. The parameters G and L in the whitening
process have different values for each suspected object, where
G is determined to be the number of samples having energy val-
ues larger than 15% of the maximum energy of the preprocessed
and nonlinearly smoothed data in a single sweep, and L cor-
responds to the number of samples that have energies below
15%. The 60% and 15% figures were selected based on experi-
mentation to obtain the best performance from GPR System-2.
Because the handheld system collects data in 1-D sweeps, the
averaging in EDS is over the cross-track direction x only, and
the averaging size N within a sweep corresponds to the samples
with energies above 60% of the maximum energy in the sweep.
Because the radar has a much denser spatial sampling and a
finer spectral resolution, a more accurate estimate of the EDS
can be obtained. As a result, we use all 70 frequency points to
form the feature vector, and no subbanding was applied. The
matched filter to be multiplied with the spectral feature vector
as indicated in (9) is generated from the training data.

Using the data from the handheld GPR, Fig. 10 depicts
the EDS of the same three mines corresponding to those in
Fig. 6. Unlike the pulsed radar, the handheld GPR (frequency-
swept GPR) sends out sinusoids of frequencies separated by
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Fig. 11. EDS of two antipersonnel mines, data from the handheld radar having
smaller bandwidth but a higher frequency resolution.

20 MHz and measures the signal strengths returned back.
Hence, the EDS of the handheld GPR has a frequency reso-
lution of 20 MHz, giving a finer frequency resolution that is
7.5 times higher than that of the pulsed radar. As a result, the
EDS produced by the frequency-swept radar (Fig. 10) have
much sharper spectral peaks than the EDS from the pulsed radar
(Fig. 6). The difference in the design of the two radars—pulsed
versus frequency swept—contributes to the difference in peak
size of the EDS from the two radars. It should be noted
that the total bandwidth of the frequency-swept GPR is only
1.4 GHz, so that its resolution in depth is much smaller than the
pulsed GPR that has a bandwidth of 7 GHz. The consequence is
that the mine target and the ground have very few depth pixels
separation in the frequency-swept radar, and LP technique is
needed to remove the ground bounce effect instead of using
range gating as in the pulsed radar. We observe that the EDS in
Figs. 6 and 10 are quite consistent with each other in the spectral
peak location. The consistency to some extent corroborates the
fact that the EDS features result from the physical character-
istics of mine targets, and they are relatively insensitive to the
GPR used.

The EDS characteristics occur not only in the plastic antitank
mines, they also appear in low-metal antipersonnel mines that
are much smaller than the antitank mines. Fig. 11 gives the
EDS plots of two weak-scattering plastic antipersonnel mines
derived from the handheld GPR data. Interestingly enough,
their spectral characteristics are very similar to those for the
three plastic antitank mines shown in Fig. 10.

IV. EXPERIMENTAL RESULTS

A number of experiments were performed to corroborate the
effectiveness of the spectral features to improve the detection
of landmines. The first experiment uses the data collected from
the wide bandwidth vehicle-mounted GPR. The second exper-
iment applies to the data collected from the smaller-bandwidth
handheld-based GPR. The third experiment examines the fu-

sion performance of the spectral feature confidence value and
detection confidence produced from the time-domain geometric
features extracted from the GPR signature.

The three experiments use different datasets. They were ob-
tained from different test sites that are geographically separated
and have different soil properties and conditions. The first
dataset was collected in October 2002 and January 2003, the
second in October 2004, and the third in February 2004. The
data were collected over lanes that contained both landmine
targets and clutter objects. The clutter objects could be pieces
of metal, pieces of wood, plastic caps, and many variations of
them. The feed-forward ordered weighted averaging (FOWA)
algorithm [45] that is based on the geometric features gener-
ated from the time-domain GPR data were used as a baseline
reference for comparison.

A. Experiment 1

The first experiment used the data collected in a desert region
with a dry soil condition. The data were collected twice, in
October 2002 and January 2003. The mine lane was 50 m
long and 3 m wide and contained 11 plastic antitank plastic
landmines from three different types buried at depths of either
7.6 or 12.7 cm. Seven of those 11 mines were known to have
weak-scattering GPR signal and were therefore difficult to
detect in a typical time-domain approach. Table II(a) and (b)
show the results of the two data collections in terms of number
of mines detected and the corresponding false alarm rate (FAR).
The FAR was computed by dividing the number of false alarms
by the area of the lane. The SCF confidence value did not have
any geometric information because the EDS was generated
by averaging over a square window of 25 cm cross-track and
25 cm down-track. It was therefore beneficial to divide the SCF
confidence given in (9) by the fixed compactness to form the
overall detection confidence. The fixed compactness [45] is the
radius of a disk centered at the alarm location that contains 45%
of the total GPR energy projected along several depth segments.
The results from using 1/Compactness as the confidence and the
FOWA algorithm output are also given for comparison. FOWA
[45] computed the geometric features such as compactness,
solidity, and eccentricity from the time-domain GPR-whitened
signal energies at several depth segments, found the ordered
weighted averages (OWA) of them, and used a decision network
to form the confidence for landmine detection. The FOWA
score is the average of three independent trainings that started
with different initial seeds. Although the average in the FOWA
scores was taken, the variations of the individual FOWA scores
were very small. The testing data were not included in the
training. The receiver-operating characteristic (ROC) curves
corresponding to the results given in Table II is given in
Figs. 12 and 13.

The results in Table II(a) and (b) are quite consistent. In
particular, the detection results from the spectral confidence
divided by the compactness are better than those from 1/Com-
pactness, as well as the FOWA scores. For the first dataset,
FOWA is not able to reach 100%, and in the second dataset, the
reduction in FAR over FOWA is 35% at 100% Pd. It is evident
that the spectral feature is able to reduce the number of false
alarms produced by clutter objects and improve the detection
of weak mines.
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TABLE II
(a) DETECTION PERFORMANCE OF THE OCTOBER 2002

COLLECTION OF DATASET 1 IN EXPERIMENT 1;
(b) DETECTION PERFORMANCE OF THE JANUARY 2003

COLLECTION OF DATASET 1 IN EXPERIMENT 1

Fig. 12. ROC curves that correspond to the results in Table II(a).

Fig. 13. ROC curves that correspond to the results in Table II(b).

B. Experiment 2

This experiment used the second dataset collected in October
2004 using the handheld frequency-swept GPR, which has a
smaller bandwidth compared to the vehicle-mounted GPR. The
data were acquired from another test site different from that in
Experiment 1. Unlike the first experiment, in which the mine
and clutter objects were buried randomly in a lane, the mine
and clutter objects are at the centers of 1-m2 cells, and they are
buried at depths ranging from 0.625 to 10.16 cm. There were 44
mine targets, 158 clutters, and 23 empty cells. There were 12
types of landmines, and the landmine targets had good mix and
variations of antitank, antipersonnel, plastic, and metal mines.
Regarding clutter, both metal and nonmetal clutter objects were
present. Metal clutter had metal content ranging from less than
3 g to more than 40 g. Nonmetal clutter included plastic, stones,
and pieces of wood in regular and irregular shapes.

When the data were collected, the GPR sensor head swept
the suspected alarm location six times across, and two times
in the perpendicular direction. The (6,2) sweeps were decided
based on a balance between performance and the time needed
to collect the sweeps. Among these eight sweeps, two or three
were selected based on the largest energy return, where two
sweeps was for antipersonnel mines and three sweeps is for
antitank mines. The EDS were then generated for the selected
sweeps using the procedure as described in Section III. The
EDS were then averaged to form a single EDS from which
to compute the SCF confidence value according to (9). There
were three matched filters, each corresponding to a particular
set of weak-scattering antipersonnel mines. The maximum of
the three matched filter outputs is the SCF confidence.

Compactness was also used here to improve the confidence
value because the SCF did not contain size information. The
sweeps in this case are only 1-D, and the compactness is gener-
ated based on the 1-D sweep, which is defined as the square
root of the successive number of samples whose projected
energies along depth were bigger than 60% of the largest energy
value in this sweep. The confidence value for scoring was the
SCF divided by this compactness value. This radar has a high-
frequency resolution, and we found that some metal clutter
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Fig. 14. ROC curves from SCF/Compactness, 1/Compactness, and CorrDet.

objects have significant energies at the frequency band from 1.1
to 1.3 GHz relative to the mine target frequency band ranged
from 1.3 to 1.5 GHz. Hence, we decreased the confidence
value by a factor of two if the ratio of the energies in the
bands between (1.1–1.3 GHz) and (1.3–1.5 GHz) was larger
than 0.4. This procedure was determined experimentally, and a
better formulation was needed to make better use of the EDS to
capture the difference in mine and clutter characteristics.

Fig. 14 shows the ROC curve comparisons of this radar. The
FOWA algorithm is not applicable for this dataset because it
contains only 1-D sweeps, and the features in FOWA assumes
2-D energy maps at different depth segments. Hence, the result
from CorrDet [47] was used for comparison, where the single
confidence value was obtained by taking the maximum of the
CorrDet algorithm output in the selected sweeps for each target
object. The proposed spectral feature was able to decrease the
Pfa by 35% at 90% Pd, which is a very significant improvement.
Also shown is the ROC curve computed from 1/Compactness
only. The result from 1/Compactness is quite worse, which con-
firms that the source of the improvement is the spectral feature.

There is one type of antipersonnel landmine that was rela-
tively difficult to detect. Its low detectability was because this
type of landmine has a very low energy return, and hence the
signal-to-background noise ratio was very low, and the EDS
generated was not able to improve its detectability significantly.
Regarding clutter, we find that a slightly compressed soder
can produce very similar spectral characteristics as a landmine
because its shape is very close to some small antipersonnel
landmines.

C. Experiment 3

The third experiment examined the advantage of fusing the
detection confidences from spectral features and geometric
features extracted from GPR signature to improve performance.
The dataset was collected by the vehicle-mounted mine detec-
tion system in February 2004 but at a different site from the
previous two experiments. Here, we used the simple geometric
mean fusion with an offset as shown below:

Fused Result = FOWA • (SCF/Compactness + 0.5) (13)

TABLE III
FUSION PERFORMANCE IN TWO MINE LANES AND ONE CLUTTER LANE

where FOWA denotes the confidence value from the FOWA
algorithm, which was obtained from the geometric features
only. The constant 0.5 was determined based on the dynamic
range of the FOWA and SCF/Compactness confidence values.
It had the effect of setting the fused confidence to be half of that
from FOWA when the SCF/Compactness value was very low.
This would happen for some wooden box mines in which their
spectral characteristics did not show a spectral peak around
1–2 GHz.

To examine the ability of using the spectral feature to reduce
the number of false alarms due to clutter objects, we scored
two mine lanes and one clutter lane together. There were a
total of 80 mines from the two mine lanes. The clutter lane
had emplaced clutter objects. The two mine lanes had a total
area of about 850 m2, and the clutter lane had an area of
300 m2. Table III shows the number of false alarms resulting
from FOWA and after fusing it with the SCF/Compactness
using (13). The first column is the Pd, the second column is
the total number of false alarms for FOWA, the third column is
the false alarm count in the clutter lane only, and the fourth
and fifth columns are the corresponding false alarm counts
after fusion. It can be seen that, except at 100% Pd, fusing
FOWA with SCF spectral confidence reduced the number of
false alarms significantly, particularly when the Pd was around
96% to 99%.

V. CONCLUSION

This paper investigated the spectral characteristics of a target
obtained by GPR measurements to improve landmine detection
and clutter discrimination. We began with the theoretical study
of the EDS of some weak-scattering plastic landmines through
FDTD modeling and derived an estimation procedure that
generated the EDS at an alarm location using GPR data mea-
surements. Both theory and experimental study revealed that
the EDS of some weak-scattering plastic landmines had distinct
characteristics, which can be exploited for their discrimination
with clutter objects to improve their detection. The consis-
tency of the landmine spectral characteristics were confirmed
by the data collected at several geographically separated test
sites having different soil conditions and by the data produced
from two completely different radar systems. The experimental
results corroborated the effectiveness of the spectral features in
improving landmine/clutter discrimination and the robustness
of the EDS estimation method.
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The EDS was able to discriminate the clutter objects that had
different size, geometry and composition with a landmine tar-
get. In practice, there may be some clutter objects that have sim-
ilar geometry and composition characteristics as a landmine.
As a result, the proposed technique will be more appropriate
to be used as features that will be fused with other algorithm
outputs. Our recent work [54] indicates that by fusing the
spectral features from EDS with the time-domain GPR features,
or metal detector features, better performance can be achieved.
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Optimizing the Area Under a Receiver Operating
Characteristic Curve With Application to

Landmine Detection
Wen-Hsiung Lee, Paul D. Gader, Senior Member, IEEE, and Joseph N. Wilson

Abstract—A common approach to training neural network
classifiers in a supervised learning setting is to minimize the
mean-square error (mse) between the network output for each
labeled training sample and some desired output. In the context of
landmine detection and discrimination, although the performance
of an algorithm is correlated with the mse, it is ultimately eval-
uated by using receiver operating characteristic (ROC) curves.
In general, the larger the area under the ROC curve (AUC),
the better. We present a new method for maximizing the AUC.
Desirable properties of the proposed algorithm are derived and
discussed that differentiate it from previously proposed algo-
rithms. A hypothesis test is used to compare the proposed algo-
rithm to an existing algorithm. The false alarm rate achieved by
the proposed algorithm is found to be less than that of the existing
algorithm with 95% confidence.

Index Terms—Area under the ROC curve (AUC), ground-
penetrating radar (GPR), landmine detection, pattern recognition.

I. INTRODUCTION

LANDMINE detection algorithms often consist of two
steps: a prescreener followed by an algorithm that dis-

criminates between landmines and false alarms produced by
the prescreener. We consider the discrimination portion of the
landmine detection problem here.

Landmine detection algorithms are generally evaluated in
terms of receiver operating characteristic (ROC) curves, which
are parametric curves plotting the probability of detection (PD)
against false alarm rate (FAR). Although the FAR is often given
in terms of probability of false alarm, in landmine detection, it
is often given in terms of the number of false alarms per square
meter.

Several trainable algorithms have been applied to the prob-
lem of discrimination between landmines and false alarms,
including hidden Markov models [1]–[3], neural networks
[4]–[7], support and relevance vector machines [8], [9], fuzzy
systems [10]–[12], and Choquet integrals [13], [14]. Algorithm
parameters are usually estimated by optimizing objective func-
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tions on training sets. Common objective functions include
likelihood functions, mean-square error (mse), margin between
classes, and minimum classification error.

Since the performance of a landmine detection algorithm
is evaluated using ROC curves, it is logical to optimize the
ROC curve in some sense. Objective functions for maximizing
the area under the ROC curve (AUC) have been proposed in
[15] and [16]. In this paper, we derive a new algorithm for
training a differentiable two-class classifier that maximizes an
objective function that approximates the AUC. We refer to the
objective function as the ROCA objective function and the
algorithm for training with respect to this objective function as
the ROCA training algorithm. The ROCA objective function,
unlike previously proposed objective functions, can be made
arbitrarily close to the exact AUC. In addition, the algorithm has
a significantly different behavior for false alarms with high con-
fidence values, which we believe as advantageous for landmine
detection. After deriving and analyzing ROCA, an application
to landmine detection is presented. A specialized artificial
neural network used for this problem previously [17], called the
feedforward ordered weighted average (FOWA) network, was
trained using ROCA, mse objective function, and the algorithm
proposed by Yan et al. [15]. We will refer to the algorithm by
Yan et al. as the WMW algorithm since its objective function
is based on the Wilcoxon-Mann-Whitney statistic. To reduce
the effects of random initialization, networks were trained
50 times, and the FARs for fixed PDs were averaged over the
50 training runs. Comparisons are made among ROCA, mse,
and WMW algorithms. ROCA training outperformed the mse,
producing average reductions in FAR between 44% and 56%
for PD between 90% and 100%. By conducting hypothesis
tests, we conclude that the ROCA algorithm also outperformed
the WMW algorithm, producing statistically significant average
reductions in FAR between 5% and 16% for PD between 90%
and 100%.

II. ROC AREA OPTIMIZATION ALGORITHM

In this section, we derive the ROCA training algorithm and
compare it analytically to the WMW algorithm. The ROCA
algorithm is based on differentiation of a function related to
the AUC. Yan et al. [15] and Rakotomamonjy [16] have noted
that the exact AUC is nondifferentiable with respect to the
classifier’s parameters. However, while it is true that there is
no real-valued function that is the derivative of the AUC, the
derivative does exist in the sense of generalized functions. The

0196-2892/$25.00 © 2007 IEEE
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generalized function form of the derivative does not directly
lead to a useful algorithm for optimizing the AUC but does
lend some insight. A finite difference technique can be used to
approximate the derivative. The approximate form converges
to the generalized function form as the finite difference goes
to zero. This approximation leads to a useful algorithm for
optimizing the AUC. We show in this paper that, as long as the
functional form of the classifier is differentiable with respect
to its parameters, the approximate AUC can be optimized by
gradient descent, and that the approximate AUC can be made
arbitrarily close to the exact AUC. In Section II-A, we derive
the ROCA algorithm. In Section II-B, we show analytically
how the ROCA algorithm differs from the WMW algorithm.
Experimental comparisons are given in Section III.

A. Algorithm Derivation

In this section, we first provide an expression for the AUC.
We then derive an expression for the derivative of the AUC
in terms of delta functions and point out why the expression
does not yield a useful algorithm. Following that, we use finite
differences to derive an expression for approximate AUC that
can be optimized. The approximate AUC converges to the exact
AUC as the finite difference goes to zero. We point out how
the derivative of the approximate AUC parallels that of the
exact AUC. Finally, we provide an algorithm for optimizing the
approximate AUC using gradient descent.

We assume a set of training samples, T = X ∪ Y , where
X = {xi|i = 1, 2, . . . ,M} is a set of feature vectors computed
from class 1 (e.g., landmines in our case) and Y = {yj |j = 1,
2, . . . , N} is a set of feature vectors computed from class 2
(e.g., prescreener false alarms). We seek to use the training data
to estimate the parameter vector θ for a systemf(·; θ) that maps
an input feature vector z from a training sample to a confidence
f(z; θ) ∈ [tmin, tmax] that z represents a sample from class 1.
The larger the value of f(z; θ), the more likely that z represents
a sample from class 1. To simplify notation, define

dij(θ) ≡ f(xi; θ) − f(yj ; θ). (1)

The PD and FAR at threshold value t, denoted by P (t) and
F (t), respectively, are given by

P (t) =
1
M

M∑
i=1

u
(
f(xi; θ) − t

)
(2)

F (t) =
1
A

N∑
j=1

u
(
f(yj ; θ) − t

)
(3)

where u(a) is one if a > 0 and zero otherwise, andA represents
either the total number of prescreener false alarms (A = N) or,
as is often the case in mine detection, A is the total area of the
lanes from which the training data are drawn. For the purpose
of general development, A is just a constant. The exact AUC is

AUC =

∞∫
0

PD|FAR=F (t)dF (t) (4)

where PD|FAR=F (t) is the PD at FAR = F (t) and
PD|FAR=F (t) = P (t). The upper limit of the integral is
set to ∞ to take into consideration all possibilities for A and
N , including the extreme case where A is the total area and N
is infinity. (Note that we will refer to the exact AUC as either
exact AUC or AUC.)

Replacing dF (t) with F ′(t)dt and using the expressions for
P (t) and F (t) in (2) and (3) yield

AUC=

tmin∫
tmax

P (t)
dF (t)
dt

dt

=

tmin∫
tmax

1
M

M∑
i=1

u(f(xi; θ)−t) d
dt

1
A

N∑
j=1

u
(
f(yj ; θ)−t

)
dt

=
1

MA

M∑
i=1

N∑
j=1

tmax∫
tmin

u
(
f(xi; θ) − t

)
δ
(
f(yj ; θ) − t

)
dt

=
1

MA

M∑
i=1

N∑
j=1

u (dij(θ)) (5)

where δ represents the Dirac delta function. Optimization using
derivatives requires the derivative of the terms of the sums in
(5). This derivative can be written in terms of delta functions as

∂

∂θ


 1
MA

M∑
i=1

N∑
j=1

u (dij(θ))




=
1

MA

M∑
i=1

N∑
j=1

δ (dij(θ))
∂

∂θ
dij(θ). (6)

If we were to use (6) in a gradient-descent-based update for-
mula, then parameter updates would only occur if dij(θ) = 0.
Since this is extremely unlikely to happen, this derivative
does not lead directly to a useful algorithm. The problem can
be remedied using a finite difference approximation of the
derivative of F . This leads to a gradient-descent algorithm that
updates parameters whenever 0 < dij(θ) ≤ ∆t, where ∆t is
the finite difference. To this end, let ∆t denote a nonnegative
real number. Then

AUC =

tmin∫
tmax

P (t)F ′(t)dt

≈
tmin∫

tmax

P (t)
F (t) − F (t− ∆t)

∆t
dt

=

tmax∫
tmin

P (t)
F (t− ∆t) − F (t)

∆t
dt. (7)
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Fig. 1. Three overlap cases between the intervals [tmin, f(xi; θ)] and
[f(yj ; θ), f(yj ; θ) + ∆t].

Substituting the expressions for PD and FAR from (2) and (3)
into (7) yields the following expression for the approximate
AUC, which we refer to as J(∆t):

J(∆t) =
1

∆t

tmax∫
tmin

[
1
M

M∑
i=1

u
(
f(xi; θ)−t

)]

·


 1
A

N∑
j=1

u
(
f(yj ; θ)−(t−∆t)

)

− 1
A

N∑
j=1

u
(
f(yj ; θ)−t

) dt

=
1

∆t ·MA

M∑
i=1

N∑
j=1

tmax∫
tmin

u
(
f(xi; θ)−t

)

·
[
u
(
f(yj ; θ)−(t−∆t)

)
−u
(
f(yj ; θ)−t

)]
dt. (8)

Clearly, lim∆t→0 J(∆t) = AUC. We also show in Appendix A
that J(∆t) approaches AUC monotonically from below.

Note that the terms u(f(xi; θ) − t) and [u(f(yi; θ) − (t−
∆t)) − u(f(yj ; θ) − t)] of the integrand in (8) are nonzero
only if tmin ≤ t ≤ f(xi; θ) and f(yj ; θ) ≤ t ≤ f(yj ; θ) + ∆t,
respectively. For the integrand to be nonzero for a pair i and j,
the two intervals [tmin, f(xi; θ)] and [f(yj ; θ), f(yj ; θ) + ∆t]
must overlap. The calculation of the integral in (8) can be split
into three cases corresponding to different types of overlap as
shown in Fig. 1.

To write these cases out, let

C1 = {(i, j)|dij(θ) ≤ 0}

C2 = {(i, j)|dij(θ) ∈ (0,∆t]}

C3 = {(i, j)|dij(θ) > ∆t} . (9)

Also, denote the terms in the sum in (8) as Tij . Then

Tij ≡
tmax∫

tmin

u
(
f(xi; θ) − t

)

×
[
u
(
f(yj ; θ) − (t− ∆t)

)
− u
(
f(yj ; θ) − t

)]
dt

=




(a) 0, if (i, j) ∈ C1

(b)
f(xi;θ)∫
f(yj ;θ)

1 · dt = dij(θ), if (i, j) ∈ C2

(c)
f(yj ;θ)+∆t∫

f(yj ;θ)

1 · dt = ∆t, if (i, j) ∈ C3.

(10)

The cases in (10) are depicted in Fig. 1. The objective function
J(∆t) is expressed as a function of f(xi; θ), i = 1, 2, . . . ,M ,
and f(yj ; θ), j = 1, 2, . . . , N , so the gradient descent can be
used to iteratively update the parameter vector θ as long as
the derivative of the function f(·; θ) with respect to θ can be
determined. To compute the update term for θ, the update terms
due to every pair of xi and yj are accumulated until all pairs
of xi and yj are processed and θ is updated. This process
is repeated until some convergence criterion is met. More
precisely, the ROCA training algorithm proceeds as follows:

Algorithm: ROCA training
Initialize θ

Do until stopping criterion reached
1. Compute f(xi; θ) and f(yj ; θ) for every training

sample
2. Set ∇ave

θ J(∆t) = 0

3. For each pair of training samples xi and yj

- Identify which case, (a)–(c), of (10) is satisfied
- If case (b) is satisfied then

Compute ∇i,j
θ J(∆t) = (∂J(∆t)/∂f)(∂f/∂θ)

using (b)
Set ∇ave

θ J(∆t) = ∇ave
θ J(∆t) + ∇i,j

θ J(∆t)

End If
End For

4. Update θ = θ + η∇ave
θ J(∆t)

End Do

Given the training set T = X ∪ Y and a classifier f , let D
be defined as D ≡ mini,j{max(dij(θ), 0)}. Then, if 0 < ∆t <
D, the objective function J(∆t) in (8) always yields the AUC
in (5). The only exception is when D = 0 and AUC is 0. Two
other desirable properties of J(∆t) are presented in Appen-
dix A. Specifically, we show that J(∆t) is monotonic and
lim∆t→0 J(∆t) = AUC. The limit is reached for 0 < ∆t < D
as indicated above.

The method for deciding on a value for ∆t offers oppor-
tunities for future research. Clearly, different choices lead to
different behaviors. For example, if 0 < ∆t < D, all deriv-
atives will be zero and no update will occur. If ∆t is too
large, then we use all pairs for updating, even those for which
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f(xi; θ) � f(yj ; θ). Furthermore, one could choose a single
value for ∆t, or devise a method by which ∆t is modified
every training iteration. There are many possibilities. In our
experiments, we heuristically chose ∆t = (minj(f(yj ; θ)) −
tmin)/2 as we found that such a ∆t was not too small nor too
large. Future work will focus on more analytical method for
choosing ∆t.

B. Analytical Comparison to WMW Algorithm

By contrast, consider the WMW algorithm by Yan et al.
[15]. The WMW algorithm minimizes the following objective
function:

UR

(
f(xi; θ), f(yj ; θ)

)
=

M∑
i=1

N∑
j=1

R1

(
f(xi; θ), f(yj ; θ)

)
(11)

where

R1

(
f(xi; θ), f(yj ; θ)

)
=
{

(− (dij(θ)−γ))p , if dij(θ) < γ

0, otherwise
(12)

with 0 < γ ≤ 1 and p > 1.
There are several differences between the objective function

UR and J(∆t). To analyze the differences, first notice that UR

is formulated as a minimization rather than a maximization
problem. We can change the WMW objective function into
a maximization problem by posing it as a maximization of
B − UR/MA, where B is the maximum possible value of
AUC. Now, suppose the confidence value of each mine is
higher than the confidence value of every false alarm. Then, the
AUC reaches its maximum value at B = (M ·N)/(M ·A) =
N/A. The objective function UR(f(xi; θ), f(yj ; θ)) is equal to
(B − AUC)MA only when p = 0 and γ = 0. But, the objective
function is a constant when p = 0 and cannot be optimized.
In addition, although limp→0,γ→0 UR = (B − AUC)MA, the
value p = 0 is also not allowed, since p must be larger than one
according to the definition in [15]. On the other hand, if p �= 0, it
is not clear how UR(f(xi; θ), f(yj ; θ)) is related to AUC, since
UR(f(xi; θ), f(yj ; θ)) depends explicitly on the difference of
f(xi; θ) and f(yj ; θ), i = 1, 2, . . . ,M , j = 1, 2, . . . , N , but
AUC depends only on whether f(xi; θ) is greater than f(yj ; θ)
for i = 1, 2, . . . ,M and j = 1, 2, . . . , N .

To see the impact of this property, suppose there are outliers
in the training data such that dij(θ) � 0 for some pair i and
j (the confidence for the ith mine is much less than that of
the jth false alarm). This can happen if the ith mine has a
very poor signature and the jth false alarm has a very strong
signature. It is unwise to train against such false alarms, but
when training against large databases, it is difficult to screen
out such examples. While the ROCA algorithm does not update
the parameters when encountering such pairs [see case (a) in
(10)], those pairs dominate the parameter updates in the WMW
algorithm because the first factor in the expressions for the

derivatives of the terms of the objective function will be large,
resulting in large changes in parameters. The derivative is

∂R1

(
f(xi; θ), f(yj ; θ)

)
∂θ

=



p (− (dij(θ) − γ))p−1

×
(
−∂f(xi;θ)

∂θ + ∂f(yj ;θ)
∂θ

)
, if dij(θ) < γ

0, otherwise.

(13)

That is, the WMW algorithm is forcing the parameters to
recognize the outliers. In the problem of landmine detection,
for which we will present experimental results in the next
section, it is not unusual to have outliers like large metal objects,
which have strong ground-penetrating radar (GPR) signals. To
force the parameters to learn the characteristics of outliers is
often undesirable. In this aspect, the ROCA algorithm is more
immune to outliers and therefore potentially more robust than
the WMW algorithm.

Picking from values suggested by Yan et al. [15], we tried
various values for p and γ in experiments for the problem
of landmine detection. The results for p = 2 and γ = 0.1 are
presented in the next section as those values lead to the best
performance of the WMW algorithm.

III. APPLICATION TO LANDMINE DETECTION

We provide an example of optimizing the AUC for the
problem of discriminating between landmines and false alarms
using a classifier called FOWA. The FOWA network has been
described in previous publications [17] and satisfies the require-
ments of the system f(·; θ) described in the previous section.
In the context of landmine detection, given a feature vector z,
the FOWA network computes a single value f(z; θ) that can
be interpreted as the confidence that z represents a mine. The
FOWA network is a standard feedforward (F ) network coupled
with a unique front end that integrates values over depth using
ordered weighted averaging (OWA) operators. The elements of
θ are the weights of the feedforward network and the OWA
operators. For completeness, the training algorithm is given in
Appendix B.

The mse, ROCA, and WMW algorithms were evaluated
using the GPR data collected from outdoor test lanes at two
different locations. The first, Site 1, is in a temperate region with
significant rainfall, whereas the second, Site 2, is in an arid re-
gion. Soil was moist at Site 1 and very dry at Site 2. The lanes at
both sites are simulated dirt or gravel roads. The lanes at Site 1
are 500 m long and 3 m wide. The lanes at Site 2 are 300 m
long and 3 m wide. The lanes at Site 1 are labeled 1A, 1B, and
1C, and contain mines. The lanes at Site 2 are labeled lanes
2A, 2B, and 2C. Lanes 2A and 2B contain mines, and lane 2C
contains both mines and emplaced clutter items, such as pieces
of metal and wood. The numbers of mines of each type in the
lanes are given in Table I. All the mines are Anti-Tank mines.

Two data collections were performed at each site resulting
in a total of four collections, each in a different month. The
collections at Site 1 were made in November and December
2002, and the collections at Site 2 were made in October
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TABLE I
NUMBERS OF MINES, CLUTTERS, AND HOLES IN CALIBRATION LANES

2002 and January 2003. A prescreener [18] was run on all the
lanes creating a set of 170 mines detected and 978 prescreener
false alarms. Altogether, 172 mine encounters are possible. The
prescreener missed two mines, and therefore, the highest PD
is 170/172 = 0.9884. With the total area of the mine lanes at
7213.98 m2, one false alarm contributes to 1.39 × 10−4(/m2)
of FAR. This set was used for comparing the mse, ROCA, and
WMW algorithms. Geometric features including eccentricity,
solidity, compactness, ratio of area to filled area [19] are
computed for each of the alarms. Those geometric features
along with the prescreener output value are used as input to the
FOWA network.

To compare the mse, ROCA, and WMW algorithms for train-
ing the FOWA network, their performance must be evaluated
statistically because randomly initialized weights are involved.
As is the case with almost all training algorithms, different
initializations may lead to different solutions because of local
extrema. Hence, the average performance must be calculated
over a set of training experiments, each using a different
initialization. Therefore, 50 training experiments or runs were
conducted for the mse, ROCA, and WMW algorithms. Each
run consisted of lane-based cross validation for each of the mse,
ROCA, and WMW algorithms. Lane-based cross validation is
described by the following pseudocode.

Algorithm: Lane-based cross validation
For each lane L

Validation set = {set of all alarms from all
occurrences of lane L}

Training set = {set of all alarms from all
occurrences of other lanes}

Train on training set until stopping criterion met
Assign confidence values to all alarms in validation set
End For
Generate ROC curve based on confidence values of all

alarms from all lanes.

For the mse approach, the FOWA weights were trained by
minimizing the mse of the training data with −0.7 and 0.7
as the desired values of the classes of mines and nonmines,
respectively. These desired values were previously found to
perform well [17]. The AUC for the cross-validation data was
used as the criterion for picking the set of trained weights to
make sure that the final weights led to a maximum AUC for
the cross-validation data. Using the cross-validation data for
determining when to stop the training prevents overfitting. By
using the weights thus obtained, we recorded the scores for
the cross-validation data. Since the ultimate goal is to improve
upon the FAR obtained by the mse algorithm in each run, the
weights obtained by the mse algorithm were then used as the
initial weights for both the ROCA and WMW algorithms. For

Fig. 2. Average ROC curves over 50 runs.

the ROCA algorithm, two approaches were taken to determine
when to stop the training: the first one (referred to as ROCA-A,
i.e., ROCA with Approximate AUC) used the approximate
AUC in (8), and the second one (referred to as ROCA-E, i.e.,
ROCA with Exact AUC) used the exact AUC in (5). For the
WMW algorithm, two approaches were also taken to determine
when to stop the training: The first one (referred to as WMW-A)
used UR, and the second one (referred to as WMW-E) used
the exact AUC in (5). For every algorithm, the FOWA network
has five OWA operators, one input layer with eight nodes, one
output layer with single output, and one hidden layer with
15 hidden nodes.

For a given threshold, a mine is considered detected if there
is an alarm within 0.25 m from the edge of the mine with
confidence value above the threshold. Given a threshold, the PD
for a lane or set of lanes is defined to be the number of mines
detected divided by the number of mines. A false alarm is an
alarm with confidence above the threshold and with location
farther than 0.25 m from the edge of any mine. The FAR is
defined as the number of false alarms per square meter.

Fig. 2 shows the average ROC curves over 50 runs for
mse, ROCA-A, ROCA-E, WMW-A, and WMW-E. Since the
approximate AUC in (8) can be arbitrarily close to the exact
AUC in (5), the difference between the ROC curves of ROCA-A
and ROCA-E is minimal as expected. On the other hand,
WMW-A does not perform nearly as well as WMW-E.
WMW-E shows a slight improvement on FAR over the mse
algorithm.

Table II shows the average score (PD versus FAR) over
50 runs for the mse, ROCA-E, and WMW-E algorithms. Also
shown in Table II is the percentage reduction of FAR by the
ROCA-E and WMW-E algorithms over the mse algorithm. For
PD higher than 90% and attainable (100% PD was not attained),
the reduction achieved by the ROCA-E algorithm is at least
44%. One the other hand, the largest reduction achieved by the
WMW-E at any one level of PD is 15.8%.

To determine whether the difference between the average
scores of ROCA-E and WMW-E is significant, we ran hypothe-
sis tests on the FAR at each value of PD above 90%. Assuming
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TABLE II
AVERAGE FAR OVER 50 EXPERIMENTS

Fig. 3. Plot of 95% confidence interval for (mean FAR of WMW-E-mean FAR
of ROCA-E) versus PD.

the FAR at each value of PD is normally distributed, it was
shown that by conducting two-sample T-tests that with 95%
confidence, the mean FAR of WMW-E is always higher than
that of ROCA-E. Fig. 3 shows the 95% confidence interval
for the difference between mean FAR of WMW-E and FAR of
ROCA-E at each value of PD higher than 90%.

IV. CONCLUSION

The ROCA algorithm has been derived for maximizing
the approximate AUC. The ROCA algorithm is general;
therefore, it can be used to train weights for any systems with
functional forms that are differentiable with respect to the
parameters. A specific application to landmine detection using
FOWA networks was described. Experiments show that the
ROCA algorithm reduces the FAR over the mse algorithm by
44%–56% for PDs in the range of 90%–100%. By contrast,
the previously proposed WMW algorithm reduces the FAR
over the mse algorithm by 5.1%–15.8% for the same range
of PD. The ROCA algorithm outperformed the WMW algo-
rithm, and the difference is statistically significant with 95%

confidence. An analysis of the update equations shows that
the WMW algorithm treats outliers quite differently than the
ROCA algorithm, and this difference is likely to produce the
improved performance demonstrated by the ROCA algorithm.

One may wish to restrict the range of PD or FAR and opti-
mize the area under a portion of the ROC curve. This restriction
would require restricting the values of the threshold variable
t dynamically, since the specific values that yield the correct
interval over which to optimize would change from iteration to
iteration. For example, if one wishes to optimize only for values
of FAR in the interval [Flow, Fhigh], then at each iteration values
of t, say tlow and thigh, must be found so that F (tlow) = Flow

and F (thigh) = Fhigh. Restrictions on the values of t lead to
several additional cases that need to be added to (10) depending
how the values f(xi, θ) and f(yj , θ) compare to the values tlow
and thigh. While it is straightforward to write out the cases,
the increased level of detail would unnecessarily obscure the
current discussion. It is also possible to express P and F as
functions of some appropriate h(t, θ) rather than simply t, as we
have chosen to do. Such a change could support more complex
and perhaps robust criteria for specifying those aspects of the
ROC to be optimized. It is an interesting subject for further
research to investigate whether or not such changes would lead
to an enhanced performance.

APPENDIX A
PROPERTIES OF THE PROPOSED OBJECTIVE FUNCTION

Property 1. J(∆t) ≤ AUC:
Proof:

J(∆t)=
1

∆t ·MA

M∑
i=1

N∑
j=1

Tij

=
1

∆t ·MA

∑
(i,j)∈C1

0 +
1

∆t ·MA

∑
(i,j)∈C2

dij(θ)

+
1

∆t ·MA

∑
(i,j)∈C3

∆t

≤
∑

(i,j)∈C2

∆t

∆t ·MA
+

∑
(i,j)∈C3

1
MA

=
1

MA
|C2 ∪ C3|.

Note that (i, j) ∈ C2 ∪ C3 if and only if u(dij(θ)) = 1.
Thus, J(∆t) ≤ 1/MA ·

∑
i,j u(dij(θ)) = AUC. �

Property 2: If ∆t1 < ∆t2, then |AUC − J(∆t1)| ≤
|AUC − J(∆t2)|.

Proof: Note that by Property 1, |AUC − J(∆tk)| =
AUC − J(∆tk) for k = 1, 2. Furthermore

AUC − J(∆tk) =
∑

(i,j)∈C
(k)
2

1
MA

−
∑

(i,j)∈C
(k)
2

dij(θ)
∆tk ·MA

=
1

MA

∑
(i,j)∈C

(k)
2

∆tk − dij(θ)
∆tk
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where C(1)
2 and C(2)

2 correspond to the set C2 for ∆t1 and ∆t2,
respectively. Note that C(1)

2 ⊆ C
(2)
2 . Hence

|AUC−J(∆t2)|−|AUC−J(∆t1)|

= (AUC−J(∆t2))−(AUC−J(∆t1))

=
1

MA


 ∑

(i,j)∈C
(2)
2

∆t2−dij(θ)
∆t2

−
∑

(i,j)∈C
(1)
2

∆t1−dij(θ)
∆t1




=
1

MA


 ∑

(i,j)∈C
(2)
2 −C

(1)
2

∆t2−dij(θ)
∆t2

+
∑

(i,j)∈C
(1)
2

(
∆t2−dij(θ)

∆t2
−∆t1−dij(θ)

∆t1

)

=
1

MA


 ∑

(i,j)∈C
(2)
2 −C

(1)
2

∆t2−dij(θ)
∆t2

+
∑

(i,j)∈C
(1)
2

dij(θ)(∆t2−∆t1)
∆t1∆t2


 ≥ 0.

�

APPENDIX B
DERIVATION OF FOWA ROCA TRAINING

As mentioned above, the system f(·; θ) can assume any
form as long as the derivative of f(·; θ) with respect to
θ can be determined. We have employed a FOWA neural
network [17] as f(·; θ). Extension of the proposed algo-
rithm to other applicable f(·; θ) is straightforward. Sup-
pose the information we have for a training sample includes
vectors of features αm = [αm,1, αm,2, . . . , αm,Km

]T, m = 1,
2, . . . , Io, with elements that we wish to sort first and
scalar features αIo+1, αIo+2, . . . , αI . The input to the
FOWA system is the whole collection of features z = [αT

1 ,
αT

2 , . . . , α
T
Io
, αIo+1, αIo+2, . . . , αI ]T (see Fig. 4). Let the

mth OWA [20]–[22] system have a weight vector [wm,1,
wm,2, . . . , wm,Km

]T, and let [αm,1, αm,2, . . . , αm,Km
]T be the

input vector of Km features to the mth OWA system. Then,
the output of the mth OWA system is

λm =
Km∑
k=1

wm,kαm(k), m = 1, 2, . . . , Io (14)

where Io is the number of OWA systems and αm(k) is the
kth order statistic of the vector [αm,1, αm,2, . . . , αm,Km

]T,
i.e., αm(1) ≤ αm(2) ≤ · · · ≤ αm(Km). For m = Io + 1, Io +
2, . . . , I , λm = αm, that is, these features are not sorted and

Fig. 4. FOWA network.

weighted by OWA operators. To satisfy the following con-
straints for the OWA systems

Km∑
k=1

wm,k =1, m=1, 2, . . . , Io (15)

0 ≤ wm,k ≤ 1, k=1, 2, . . . ,Km, m=1, 2, . . . , Io (16)

the weights {wm,k} are implemented as

wm,k =
ν2

m,k

Km∑
k=1

ν2
m,k

, k = 1, 2, . . . ,Km, m = 1, 2, . . . , Io.

(17)

With tanh sigmoid functions being employed at the hidden and
output layers, the outputs at the hidden layer and output layer
are, respectively

hl = tanh

(
β1

I∑
m=1

wh
l,mλm

)
, l=1, 2, . . . , L

(18)

f(z; θ)= tanh

(
β2

L∑
l=1

wz
l hl

)
(19)

where L is the number of hidden nodes and θ is a vector with
all the weights {wm,k}, {wh

l,m}, and {wz
l } as its elements. In

our notation, z can be either xi for mines or yj for nonmines.
Suppose for the training samples xi and yj , the values of

λm are λ[i]
m and λ

(j)
m , respectively, and the values of hl are h[i]

l

and h
(j)
l , respectively. Instead of minimizing the mse between

f(xi; θ) and its desired output and the mse between f(yj ; θ)
and its desired output as in [17], the proposed algorithm aims
to maximize the objective function J(∆t) in (8). To adaptively
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update the weights θ, the steepest descent method is used. The
incremental update for wz

l , l = 1, 2, . . . , L, is

dwz
l = s1

∂J(∆t)
∂wz

l

=
s1

∆t ·MA

M∑
i=1

N∑
j=1

∂Tij

∂wz
l

=
s1

∆t ·MA

∑
(i,j)∈C2

(
∂f(xi; θ)
∂wz

l

− ∂f(yj ; θ)
∂wz

l

)
(20)

where s1 is a step size. The partial derivatives in (20) are
equal to

∂f(xi; θ)
∂wz

l

=
(
1 − f(xi; θ)2

)
β2h

[i]
l (21)

∂f(yj ; θ)
∂wz

l

=
(
1 − f(yj ; θ)2

)
β2h

(j)
l . (22)

The incremental update for wh
l,m, m = 1, 2, . . . , I , l =

1, 2, . . . , L, is

dwh
l,m = s2

∂J(∆t)
∂wh

l,m

=
s2

∆t ·MA

M∑
i=1

N∑
j=1

∂Tij

∂wh
l,m

=
s2

∆t ·MA

∑
(i,j)∈C2

(
∂f(xi; θ)
∂wh

l,m

− ∂f(yj ; θ)
∂wh

l,m

)

=
s2

∆t ·MA

×
∑

(i,j)∈C2

(
∂f(xi; θ)

∂h
[i]
l

∂h
[i]
l

∂wh
l,m

− ∂f(yj ; θ)

∂h
(j)
l

∂h
(j)
l

∂wh
l,m

)

=
s2

∆t ·MA

×
∑

(i,j)∈C2

[(
1 − f(xi; θ)2

)
β2w

z
l

(
1 −
(
h

[i]
l

)2
)

× β1λ
[i]
m −

(
1 − f(yj ; θ)2

)
β2w

z
l

×
(

1 −
(
h

(j)
l

)2
)
β1λ

(j)
m

]
. (23)

The incremental update for νm,k, k = 1, 2, . . . ,Km, m =
1, 2, . . . , Io, is

dνm,k

= s3
∂J(∆t)
∂νm,k

=
s3

∆t ·MA

M∑
i=1

N∑
j=1

∂Tij

∂νm,k

=
s3

∆t ·MA

×
∑

(i,j)∈C2

{(
L∑

l=1

∂f(xi; θ)

∂h
[i]
l

∂h
[i]
l

∂λ
[i]
m

)
∂λ

[i]
m

∂wm,k

∂wm,k

∂νm,k

−
(

L∑
l=1

∂f(yj ; θ)

∂h
(j)
l

∂h
(j)
l

∂λ
(j)
m

)
∂λ

(j)
m

∂wm,k

∂wm,k

∂νm,k

}

=
s3

∆t ·MA

×



∑

(i,j)∈C2

{[
L∑

l=1

(
1−f(xi; θ)2

)

× β2w
z
l

(
1−
(
h

[i]
l

)2
)
β1w

h
l,m

]

· xi
m,k


 2νm,k∑Km

d=1 ν
2
m,d

−
ν2

m,k · 2νm,k(∑Km

d=1 ν
2
m,d

)2




−
[

L∑
l=1

(
1−f(yj ; θ

)2)
× β2w

z
l

(
1−
(
h

(j)
l

)2
)
β1w

h
l,m

]

· yj
m,k

(
2νm,k∑Km

d=1 ν
2
m,d

−
ν2

m,k · 2νm,k(∑Km

d=1 ν
2
m,d

)2

)}
 . (24)

The parameters s2 and s3 in (23) and (24) are step sizes, and
the quantities xi

m,k and yj
m,k in (24) are the values of the feature

αm,k for the training samples xi and yj , respectively.
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Minimum Classification Error Training for Choquet
Integrals With Applications to Landmine Detection

Andres Mendez-Vazquez, Paul Gader, Senior Member, IEEE, James M. Keller, Fellow, IEEE, and
Kenneth Chamberlin

Abstract—A novel algorithm for discriminative training of Cho-
quet-integral-based fusion operators is described. Fusion is per-
formed by Choquet integration of classifier outputs with respect to
fuzzy measures. The fusion operators are determined by the pa-
rameters of fuzzy measures. These parameters are found by min-
imizing a minimum classification error (MCE) objective function.
The minimization is performed with respect to a special class of
measures, the Sugeno -measures. An analytic expression is de-
rived for the gradient of the Choquet integral with respect to the
Sugeno -measure. The new algorithm is applied to a landmine de-
tection problem, and compared to previous techniques.

Index Terms—Choquet integral, fuzzy measures, least squared
error (LSE), minimum classification error (MCE), Sugeno -mea-
sure.

I. INTRODUCTION

THE Choquet integral has been proposed as an aggregation
operator for information fusion and pattern classification

[1]–[12]. The application of fuzzy integrals to information fu-
sion was first proposed by Tahani and Keller [13], [37]. Gra-
bisch et al. [14], [1] proposed a least squares error methodology
for training measures for the Choquet integral using quadratic
programming and a heuristic gradient–descent algorithm. These
approaches both suffer from two problems. They are sensitive to
the values chosen for desired outputs and the number of param-
eters grows exponentially as a function of the number of infor-
mation sources. In addition, for the gradient–descent method,
heuristics must be used to insure that the monotonicity con-
straints of fuzzy measures are maintained. Chiang [15] proposed
a method for using gradient descent to optimize Choquet inte-
grals with respect to Sugeno -measures, but the formulas for
the derivatives were incorrect [16].

This paper makes two novel contributions. First, an analytic
expression is given for the derivative of the discrete Choquet in-
tegral with respect to a Sugeno -measure. Second, a minimum
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classification error (MCE) approach for training the Choquet in-
tegral that uses the analytic derivation is developed. This new
training approach reduces the number of parameters, removes
the need to set desired outputs, and does not require heuristics
to maintain the monotonicity constraints.

This paper is divided into the following sections. The first sec-
tion deals with the basic definitions of fuzzy measure, Sugeno

-measure, and discrete Choquet integral. After this prelimi-
nary overview, we review the training algorithm proposed by
Grabisch [17]. Following this, we derive the gradient of the dis-
crete Choquet integral with respect to Sugeno -measures. This
gradient is then used to derive two different updating equations
for gradient–descent-based optimization, the least squared error
(LSE) and MCE, objective functions involving Choquet inte-
grals and Sugeno -measures.

In the experimental section, we present information fusion
and classification results. The classification results are obtained
by applying the MCE methodology to Choquet integrals on
standard data sets and compare them to those given in [8]. The
results show that the methodology can be used to train classifiers
for multiple classes and can perform as well or better than ex-
isting methods. Information fusion results are obtained using the
MCE algorithm in the context of landmine detection. We com-
pare them to results obtained using LSE with respect to Sugeno
and general measures in the context of landmine detection. The
results point to improvement of this fusion over the individual
detectors, and the classic LSE training algorithm using one or
multiple measures.

II. FUZZY MEASURES AND THE CHOQUET INTEGRAL

We first define some of the basic concepts behind the theory
of fuzzy measures. These definitions can be found in [18], [14],
[19], and [20].

Definition 1: Let be any finite set. A
discrete fuzzy measure on is a function
with the following properties:

1) and ;
2) given , if then (mono-

tonicity property).
For our purposes, the set is considered to contain the names
of sources of information (features, algorithms, agents, features,
sensors, etc.), and for a subset is considered to be
the worth of this subset of information.

The Sugeno -measures are a special class of fuzzy measures.
In keeping with notational convention, we refer to this class of
measures using instead of .

1063-6706/$25.00 © 2007 IEEE
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Definition 2: Let be any finite set and let
. A Sugeno -measure is a function from

to with the following properties:
1) ;
2) if with , then

(1)

It can be shown that a set function satisfying the conditions
in Definition 2 is a fuzzy measure. In particular, equation (1)
implicitly imposes the monotonicity constraints on the Sugeno
measures. As a convention, the measure of a singleton set
is called a density and is denoted by . In addition,
we have that satisfies the property

(2)

The parameter is specific to this class of measures and can
be computed from (2) once the densities are known. Tahani and
Keller showed that this polynomial has a real root greater than

and several researchers have observed that this polynomial
equation is easily solved numerically [21], [13], [37], [12]. By
property (1), specifying a Sugeno -measure on a set with

elements only requires specifying the different densities,
thereby reducing the number of free parameters from to

.
To fuse evidence supplied by different sources of information

from a discrete fuzzy set of , we use the discrete Choquet
integral.

Definition 3: Let be a function from
to . Let denote a reordering of the set

such that , and let be
a collection of subsets defined by .
Then, the discrete Choquet integral of with respect to a fuzzy
measure on is defined as

(3)

where we take , and .
The function is a particular instance of the partial sup-

port (evidence) supplied by each source of information in de-
termining the confidence in an underlying hypothesis. The in-
tegral fuses this objective support with the worth (averagibility)
of various subsets of the information sources. We remark that in
the general definition of a Choquet integral, the function does
not need to have range . Our methodology relies on using
histograms of the data, and therefore, naturally normalizes the
function values to the range using (8) and (7).

Some extra notation is needed to make a reference to objects
in the classification problem. Let denote the set of objects
to be classified. Each information source for
is a function . For each , we define

by .
We now describe two previously published methods for

learning fuzzy measures by minimizing LSE cost functions.

III. LSE COST FUNCTIONS FOR FUZZY MEASURES

One of the first cost functions used to learn the values for
the discrete measure was proposed by Grabisch et al. [17], [14],
[22]. Given classes , they proposed a mean squared
error (MSE) criterion, where the difference desired outputs
for and the actual outputs are minimized
under constraints. The cost function is

(4)

This cost function can be reduced to a quadratic optimization
subject to linear constraints, i.e.,

s.t. (5)

In particular , and 1 are determined by the data and
what outputs need to be learned for each respective class.

An immediate problem in this approach is the use of the
same measure for the different classes. Grabisch and Nicolas
[22] addressed this problem with a modified version of (4) for a
two-class problem

(6)

where and are functions that compute class specific confi-
dence values from the information source outputs. For example,
in information fusion, we use

for (7)

whereas in classification, we use

for (8)

Note that in (7), . In (8), the values of
are generally quantized so the distribution is discrete and

. We can employ a similar procedure as
the one in (4) to convert this cost function (6) into a quadratic
problem under linear constraints. Two problems are encoun-
tered when solving these quadratic programs. First, specifying
a general fuzzy measure requires specification of pa-
rameters, which is clearly exponential. Second, the solution
can be sensitive to the desired outputs. We therefore consider
fuzzy measures with free parameters and a cost function that
avoids the use of desired outputs.

IV. GRADIENT OF THE DISCRETE CHOQUET INTEGRAL WITH

RESPECT TO A SUGENO -MEASURE

It is desirable to implicitly, rather than explicitly as in (5),
maintain the fuzzy measure constraint. This would allow the
adoption of a simple gradient–descent scheme for optimization.
A measure that implicitly enforces the fuzzy constraint is the

1The �s can be interpreted as the ideal result of evaluating a function F , the
function to be approximated, in an input x.
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Sugeno -measure. That is, the constraint that if
is always satisfied from property (2) of Definition 1.

Thus, it is desirable to obtain an expression for the gradient of
the Choquet integral with respect to the -measure.

The gradient is obtained by differentiating the discrete Cho-
quet integral (3) with respect to the densities of the Sugeno

-measure. Thus, each partial derivative of with respect
to 2 is given by

(9)

To derive , consider that according to (1)

(10)

The partial derivative of this last (10) with respect to a density
is equal to

(11)

Several cases need to be considered to obtain a general rule for
this derivative (see Appendix I). However, we still need to derive
an expression for . First, a unique for a given set
of densities can be found by solving (2). After some work, we
finish with the following term (see Appendix I):

(12)

Then, we can use (10)–(12) to design a gradient–descent algo-
rithm for any cost function involving the Choquet integral and
the Sugeno -measure. We note that the constraints that the den-
sities must lie in the interval must be enforced. This is
a standard practice in MCE applications such as maintain sto-
chastic constraints in hidden Markov models [23]–[25]. For this,
we employed the techniques of clipping and auxiliary variables.
Specifically, in the latter case, we take

where (13)

which has a well-known, well-behaved derivative. Since the
densities are forced to lie between , the measures are
guaranteed to be monotonic.

We have two immediate advantages of using this method-
ology. First, property (1) of Sugeno -measure preserves the
fuzzy measures constraint, as long as the densities stay in the in-
terval during the gradient–descent iterations. Second, we
obtain a reduction in the computational complexity because we

2Note that � is also a function of g . This can be seen in (2).

only need to calculate the changes in the densities of the Sugeno
-measure.

V. LSE AND MSE

Two different cost functions, LSE and MCE, were consid-
ered.

A. Least Squared Error

The first cost function proposed under the Sugeno derivation
is an LSE minimization for a two-class problem

(14)

where the problem is defined in terms of a unique Sugeno
-measure and a pair of desired outputs. Taking a partial

derivative with respect to each of the densities , we have

(15)

Using this last equation together with the expression for the
Sugeno -measure derivatives, it is possible to define a gra-
dient–descent algorithm.

Although, the cost function (14) reduces the computational
complexity, it is still dependant on desired outputs. This is a
serious drawback of the LSE cost functions.

B. Minimum Classification Error

In MCE training [23]–[25], we do not consider cost functions
that use desired outputs. We instead consider a cost function that
depends on a difference between confidences of different classes
[26], [27]. These differences are called dissimilarity measures.
Note that for correct classification, dissimilarity measures are
negative. The dissimilarity measure we use is

(16)

Note that (16) allows for multiple classes. The MCE algorithm
requires differentiation. Note that the function is differen-
tiable almost everywhere with a very simple derivative given by

if
else

(17)

In MCE, we introduce a loss function. Some examples of loss
function are

if
if

(18)

(19)
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In our specific optimization, we combine (18) and (19) in a
single loss function for information fusion

(20)

For classification, we use a slightly modified version of the loss
function (20)

(21)

They have the property that correctly classified samples have
zero loss. Thus, only samples that are not correctly classified
are taken in consideration for the accumulative change in the
optimization.

With this loss function (20) and the dissimilarity measure
(16), we have the following cost function for classes:

(22)

Hence, for the loss function (20)

(23)

where represents the th density for th class. Now, the term
is equal to

if

if and

if and

(24)

The derivations for the loss function (21) can be obtained in the
same way.

We can use then (9)–(12) to obtain a gradient–descent algo-
rithm for the MCE cost function (22).

This new optimization has the advantages that we have been
looking for. First, each class is represented by a unique measure,
and second, no desired outputs are necessary whatsoever.

VI. EXPERIMENTS

The LSE and MCE training methods were applied to a two-
class algorithm fusion problem in landmine detection and to
some standard data sets for pattern classification. We first dis-
cuss the fusion experiments and then the classification experi-
ments.

The landmine detection problem involved processing ground
penetrating radar (GPR) sensor returns. It is well described in

the literature but is briefly specified here. The goal is to discrim-
inate between regions of ground that contain buried landmines
from regions of ground that do not contain buried landmines.
GPR measurements were made at multiple locations, some
of which contain landmines and some of which do not. Mul-
tiple detection algorithms have been developed by numerous
researchers to process samples obtained from these sensors,
as described in [28]–[34]. Each detection algorithm involves
a complex sequence of processes including signal processing,
feature extraction, and classification. The algorithms produce
confidence values as output. The larger the confidence value,
the more likely it is that the input sample was acquired over a
region of ground containing a landmine.

The data set contained 2422 8-D samples, each containing
one confidence value from each of the eight detection algorithms
used in the detection problem. The data set contained 271 mines
samples and 2151 nonmine samples.

Three different information fusion algorithms were consid-
ered: LSE for a general measures, LSE for Sugeno -measures,
and MCE for Sugeno -measures.

The probability of detection (PD) and the probability of false
alarm (PFA) are used as performance measures. They are de-
fined as follows:

PD
Mines

Mines
(25)

PFA
Nonmines

Nonmines
(26)

where denotes the set cardinality.
Since gradient descent is sensitive to initialization, we run
-fold cross-validation times to obtain a realistic estimate of

the expected performance (for one experiment, and
). In addition, since LSE performance depends on the choice

of desired outputs and the results are sensitive to this choice,
we average over a range of reasonable desired outputs. The fol-
lowing pseudocode depicts the experimental procedure. In this
pseudocode, weights refers to the parameters of the measure to
be learned. The function compute receiver operating character-
istic (ROC) computes for us the (25) and (26) for all in the
range of detections. The values and represent the desired
outputs of the fuzzy integral in the range , for mines and
nonmines, respectively. The value selected for ranges be-
tween 0.5 and 1 for mines, and for , we choose values between
0.0 and . This values are used because we want higher
desired outputs for mines and lower outputs for nonmines. Each
fold in the cross-validation scheme is represented by .

General Testing Algorithm

• Initialize

1) Data set where , if .

2) Number of repetitions for experiment .

• For i = 1 to do

1) randomly initialize weights

2)
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3) for to

– if algorithm is LSE (this varies the desired output)

* for to

for to

Train Weights

– else

* Train Weights .

• if algorithm is LSE (this varies the desired output)

– for to

* for to

PD PFA computeROC

• else

– for to

* PD PFA computeROC

• if algorithm is LSE (this varies the desired output)

– PD PD

– PFA PFA

• else

– PD PD
– PFA PFA

Here, PD and PFA represent the PD and PFA of the th
cross-validation fold of the th experiment and the th varia-
tions in desired outputs for the LSE training functions. In a sim-
ilar fashion, PD and PFA of the th cross-validation fold of
the th experiment for the MCE training function.

Before examining the results from each algorithm, we show
the sensitivity of the LSE training for the two measures used
in the experiments. The ROC plots in Figs. 1 and 2 show some
of the variations in the PD and PFA due to random initializa-
tion under the different desired outputs in a single experiment.
We can see that different desired outputs produce different ROC
curves. In addition, the best ROC curve is not obtained using
ideal values like zero for nonmines and one for mines, but non-
intuitive values of 0.8 for mines and 0.2 for nonmines in the
case of a Sugeno -measure, and 0.5 for mines and 0.1 for non-
mines in the case of a general measure. These figures show the
sensitivity of LSE schemes to desired outputs and random ini-
tialization.

Now, we can show the results obtained from each algorithm.
In Table I, average Sugeno -measure trained via LSE is com-
pared with each individual detector. For PDs ranging from 80%

to 100%, the table shows the PFA achieved by the Choquet in-
tegral with respect to Sugeno -measure, the PFA achieved by
each detector, and the reduction of PFA achieved by the Choquet
integral with respect to Sugeno -measure compared to each de-
tector. The percentage of reduction ranges between 0.09% and
51.84%. Although a Choquet integral with respect to a Sugeno

-measure trained with LSE performs better than many of the
individual results, it is still worse than the best possible detec-
tors (detectors 6 and 7).

In Table II, we compare individual detectors against the gen-
eral measure trained using an LSE cost function. It is clear that
general measures trained using LSE improve a certain amount
over Sugeno -measures trained using LSE. This range of im-
provement is between 3.25% and 55.60%. However, the Cho-
quet integral with respect to a general measure trained with LSE
is still not better than the best detectors (detectors 6 and 7).

Table III shows that in contrast to the Sugeno -measure and
the general measure trained with LSE, the Sugeno -measure
trained with MCE is, in general, better than all the individual
detectors, with a range of improvement between 0.44% and
65.07%.

Table IV shows the improvement of MCE over the LSE. The
range of improvement is between 11.06% and 37.51% with re-
spect to the LSE cost functions.

It is possible for the Sugeno -measure and the general mea-
sure trained with LSE to be as good as the one trained by MCE.
For this to happen, it is necessary to have a set of correct desired
outputs. It is clear that depending on initialization these desired
outputs can change. This is a limitation for general measures and
Sugeno -measures under LSE optimizations, and of course, an
advantage of MCE training.

The MCE training was also applied to the iris and breast
cancer data and compared to the results shown in [8] (note
that the appendicitis data is no longer at the machine learning
website). The iris data is a three-class problem whereas the
breast cancer data is a two-class problem. As in [8], tenfold
cross validation was performed. We report the average error
rates achieved in Table V. The average error rate achieved on
the iris data was 4% whereas the average error rate achieved on
the breast cancer data was 22.7%, which compares favorably
with the results in [8].

The computational complexity of the proposed training algo-
rithm is not high. First, the number of free parameters is only
whereas the number of free parameters for a general measure is

. The final time complexity in big notation is

MCE complexity (27)

where is the number of iterations in the main loop, is the
total number of training samples, and is the number of classes
(See Appendix II). In comparison, the sequential quadratic op-
timization, used to solve quadratic problems under constraints,
would finish with an exponential time complexity.

VII. CONCLUSION

In this paper, we developed an MCE algorithm to train
Choquet integrals for fusion, and tested the training algorithm
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Fig. 1. Examples of MSE sensitivity to desired outputs for Sugeno �-measure. � and � represent the desired outputs for mines and nonmines, respectively.
The best ROC curve is obtained using 0.8 for mines and 0.2 for nonmines.

Fig. 2. Examples of squared error sensitivity to desired outputs for general measures.� and� represent the desired outputs for mines and nonmines respectively.
The best ROC curve is obtained using 0.5 for mines and 0.1 for nonmines.

against the better known LSE training in a complex multi-
classifier fusion data set from the application of landmine
detection. The MCE approach allows training of Choquet
integrals without requiring desired outputs. Although LSE
training can do as well as MCE training, on average, LSE does
significantly worse. In addition, we used the MCE algorithm
to train pattern classifiers for standard data sets and the results
compare favorably with existing results. The computational
complexity of the proposed algorithm is low and the number of

free parameters grows only linearly with the number of inputs
rather than exponentially.

A consequence of the exponential nature of the full measure is
that any attempt to learn would require a new way to calculate it.
For example, we could use Monte Carlo methods, which are ex-
treme for solving high-dimensionality problems, to learn these
measures, but you still have an exponential number of variables.
Some thoughts have been given to this idea, but this is beyond
the scope of this paper.
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TABLE I
COMPARISON OF PFA FOR SUGENO �-MEASURE TRAINED WITH LSE AGAINST DIFFERENT DETECTORS

PFA 
PD >.-measure PFADetl %Red. PFADet2 %Red. PFA Det3 %Red. 

100.00 98.28 98.37 0.09% 95.40 -3.02% 95.07 -3.37% 

98.00 32.79 57.65 43.11% 68.11 51.85% 66.99 51.05% 

96.00 24.21 30.03 19.38% 45.23 46.47% 40.31 39.93% 

94.00 18.51 24.69 25.01% 31.06 40.39% 28.36 34.72% 

92.00 13.56 19.15 29.20% 15.48 12.41% 18.83 27.98% 

90.00 10.32 16.32 36.77% 13.67 24.51% 14.64 29.54% 

88.00 8.70 14.27 39.02% 12.13 28.27% 12.18 28.54% 

86.00 7.16 12.13 41.02% 10.04 28.73% 11.11 35.59% 

84.00 5.96 10.18 41.44% 9.07 34.23% 9.34 36.19% 

82.00 5.43 8.32 34.79% 7.62 28.82% 7.81 30.52% 

80.00 4.79 7.39 35.20% 7.16 33.10% 6.65 27.95% 

PFA 
PD >.-measure PFA Det4 %Red. PFADet5 %Red. PFA Det6 %Red. 

100.00 98.28 89.31 -10.05% 76.99 -27.66% 77.03 -27.58% 

98.00 32.79 57.46 42.93% 49.09 33.20% 35.24 6.94% 

96.00 24.21 35.80 32.36% 31.94 24.19% 22.97 -5.43% 

94.00 18.51 27.24 32.05% 24.31 23.86% 13.16 -40.70% 

92.00 13.56 16.36 17.14% 15.53 12.67% 10.93 -24.12% 

90.00 10.32 12.13 14.96% 12.69 18.70% 9.44 -9.34% 

88.00 8.70 9.72 10.42% 10.51 17.16% 6.79 -28.23% 

86.00 7.16 8.69 17.68% 8.37 14.48% 5.25 -36.23% 

84.00 5.96 8.00 25.43% 7.72 22.74% 5.21 -14.51% 

82.00 5.43 6.65 18.37% 6.37 14.80% 4.60 -17.91% 

80.00 4.79 6.00 20.13% 5.16 7.18% 4.60 -4.07% 

II PD II PFA 
>.-measure II PFA Det6 I %Red I PFA Det8 I %Red II 

100.00 98.28 81.78 -20.18% 94.24 -4.29% 

98.00 32.79 38.73 15.32% 62.20 47.28% 

96.00 24.21 24.08 -0.54% 32.03 24.41% 

94.00 18.51 18.83 1.68% 26.69 30.63% 

92.00 13.56 13.58 0.11% 18.46 26.53% 

90.00 10.32 10.88 5.15% 15.20 32.12% 

88.00 8.70 8.32 -4.59% 13.44 35.22% 

86.00 7.16 6.69 -6.90% 12.27 41.69% 

84.00 5.96 5.63 -6.00% 10.55 43.50% 

82.00 5.43 5.30 -2.39% 9.67 43.88% 

80.00 4.79 4.14 -15.76% 9.25 48.23% 
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TABLE II
COMPARISON OF PFA FOR GENERAL MEASURE TRAINED WITH LSE AGAINST DIFFERENT DETECTORS AT DIFFERENT THRESHOLDS

PFA Gen. 
PD measure PFA Dell %Red. PFADet2 %Red. PFA Det3 %Red. 

100.00 91.17 98.37 7.33% 95.40 4.43% 95.07 4.11% 

98.00 30.24 57.65 47.55% 68.11 55.61% 66.99 54.87% 

96.00 21.28 30.03 29.13% 45.23 52.95% 40.31 47.19% 

94.00 15.54 24.69 37.06% 31.06 49.97% 28.36 45.21% 

92.00 12.91 19.15 32.61% 15.48 16.62% 18.83 31.45% 

90.00 10.D4 16.32 38.45% 13.67 26.52% 14.64 31.41% 

88.00 8.43 14.27 40.93% 12.13 30.52% 12.18 30.78% 

86.00 7.15 12.13 41.04% 10.04 28.76% 11.11 35.61% 

84.00 6.06 10.18 40.48% 9.07 33.15% 9.34 35.15% 

82.00 5.43 8.32 34.79% 7.62 28.82% 7.81 30.52% 

80.00 4.94 7.39 33.22% 7.16 31.05% 6.65 25.75% 

PFA Gen. 
PD measure PFA Det4 %Red. PFADet5 %Red. PFA Det6 %Red. 

100.00 91.17 89.31 -2.08% 76.99 -18.42% 77.03 -18.35% 

98.00 30.24 57.46 47.38% 49.09 38.41% 35.24 14.20% 

96.00 21.28 35.80 40.54% 31.94 33.36% 22.97 7.32% 

94.00 15.54 27.24 42.97% 24.31 36.10% 13.16 -18.10% 

92.00 12.91 16.36 21.12% 15.53 16.87% 10.93 -18.15% 

90.00 10.04 12.13 17.22% 12.69 20.86% 9.44 -6.43% 

88.00 8.43 9.72 13.23% 10.51 19.75% 6.79 -24.22% 

86.00 7.15 8.69 17.71% 8.37 14.51% 5.25 -36.18% 

84.00 6.06 8.00 24.21% 7.72 21.47% 5.21 -16.39% 

82.00 5.43 6.65 18.37% 6.37 14.79% 4.60 -17.91% 

80.00 4.94 6.00 17.69% 5.16 4.34% 4.60 -7.25% 

PFA Gen. 
PD measure PFA Det7 %Red. PFA Det8 %Red. 

100.00 91.17 81.78 -11.48% 94.24 3.26% 

98.00 30.24 38.73 21.92% 62.20 51.39% 

96.00 21.28 24.08 11.62% 32.03 33.55% 

94.00 15.54 18.83 17.48% 26.69 41.77% 

92.00 12.91 13.58 4.92% 18.46 30.06% 

90.00 10.04 10.88 7.67% 15.20 33.93% 

88.00 8.43 8.32 -1.32% 13.44 37.25% 

86.00 7.15 6.69 -6.87% 12.27 41.71% 

84.00 6.06 5.63 -7.73% 10.55 42.57% 

82.00 5.43 5.30 -2.40% 9.67 43.88% 

80.00 4.94 4.14 -19.30% 9.25 46.64% 
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TABLE III
COMPARISON OF PFA IN MCE AGAINST DIFFERENT DETECTORS AT DIFFERENT THRESHOLDS

One can use formulas for the derivative of a Choquet integral
with respect to the Sugeno -measure in any differentiable cost

function that includes Choquet integral. For example, we can
optimize the fuzzy measures not against possible error outputs,

II PD II PFA II PFA Detl %Red PFA Det2 %Red PFA Det3 %Red II 

100.00 94.65 98.37 3.78% 95.40 0.78% 95.07 0.44% 

98.00 26.89 57.65 53.35% 68.11 60.52% 66.99 59.86% 

96.00 15.80 30.03 47.40% 45.23 65.08% 40.31 60.81% 

94.00 11.07 24.69 55.14% 31.06 64.34% 28.36 60.95% 

92.00 8.07 19.15 57.89% 15.48 47.90% 18.83 57.16% 

90.00 6.65 16.32 59.27% 13.67 51.38% 14.64 54.62% 

88.00 5.45 14.27 61.81% 12.13 55.08% 12.18 55.25% 

86.00 4.96 12.13 59.10% 10.04 50.58% 11.11 55.33% 

84.00 4.38 10.18 57.01% 9.07 51.72% 9.34 53.16% 

82.00 3.93 8.32 52.82% 7.62 48.51% 7.81 49.73% 

80.00 3.61 7.39 51.10% 7.16 49.51% 6.65 45.63% 

II PD II PFA II PFA Det4 I % Red. I PFA Det5 I % Red. I PFA Det6 I % Red. II 

100.00 94.65 89.31 -5.99% 76.99 -22.95% 77.03 -22.87% 

98.00 26.89 57.46 53.20% 49.09 45.23% 35.24 23.69% 

96.00 15.80 35.80 55.87% 31.94 50.54% 22.97 31.21% 

94.00 11.07 27.24 59.35% 24.31 54.46% 13.16 15.83% 

92.00 8.07 16.36 50.71% 15.53 48.05% 10.93 26.17% 

90.00 6.65 12.13 45.23% 12.69 47.64% 9.44 29.58% 

88.00 5.45 9.72 43.90% 10.51 48.12% 6.79 19.69% 

86.00 4.96 8.69 42.91% 8.37 40.69% 5.25 5.53% 

84.00 4.38 8.00 45.26% 7.72 43.28% 5.21 15.94% 

82.00 3.93 6.65 40.94% 6.37 38.36% 4.60 14.70% 

80.00 3.61 6.00 39.73% 5.16 29.95% 4.60 21.46% 

II PD II PFA II PFA Det6 I % Red I PFA DetS I % Red II 

100.00 94.65 81.78 -15.75% 94.24 -0.44% 

98.00 26.89 38.73 30.56% 62.20 56.77% 

96.00 15.80 24.08 34.40% 32.03 50.68% 

94.00 11.07 18.83 41.19% 26.69 58.50% 

92.00 8.07 13.58 40.58% 18.46 56.30% 

90.00 6.65 10.88 38.91% 15.20 56.28% 

88.00 5.45 8.32 34.50% 13.44 59.43% 

86.00 4.96 6.69 25.87% 12.27 59.56% 

84.00 4.38 5.63 22.19% 10.55 58.52% 

82.00 3.93 5.30 25.92% 9.67 59.40% 

80.00 3.61 4.14 12.64% 9.25 60.93% 
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TABLE IV
MEAN MCE PFA AGAINST MEAN CENTRAL AND SUGENO PFA

TABLE V
COMPARISON OF MCE AGAINST SEVERAL OTHER CLASSIFIERS FOR IRIS AND

BREAST CANCER DATA

but against the ROC curve itself. Thus, the derivation found here
can be of value in other optimization methods.

APPENDIX I
DERIVATION OF THE DERIVATIVE OF THE CHOQUET INTEGRAL

WITH RESPECT TO SUGENO -MEASURE

The gradient is obtained by differentiation the discrete Cho-
quet integral

(A-1)

with respect to the densities of the Sugeno -measure. Thus,
each partial derivative of with respect to is equal to

(A-2)

To derive , consider that, according to the
property (1) of the Sugeno -measure

(A-3)

It is well known that (A-4) can be derived from (A-4) assuming

(A-4)

We can then consider the derivation of (A-3) for the case .
First, if , we have that

(A-5)

by the multiplication rule for derivatives. In a similar way for
, we have that

(A-6)
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From (A-5) and (A-6) and the fact that , we can
obtain the following.

Case I)

(A-7)

Case II)

(A-8)

Case III)

(A-9)

Case IV)

(A-10)

Now, we only need to obtain an expression for .
Differentiating both sides of (A-4) with respect to yields

(A-11)

From this equation, we can get the following:

(A-12)

which can be reduced to

(A-13)

and because we can rewrite as
, we have

(A-14)

We have finally that

(A-15)

With (A-15) together with (A-5) and (A-6), we can get the
derivative of the Choquet integral with respect to the Sugeno

-measure for .
Note that the derivation of (A-4) from (A-3) assumes that
and that the resulting expression for in (A-15)

is undefined for (since ). We can apply
L’Hopital’s rule to see that . Hence,
in the unlikely event that during training, one can take

.

APPENDIX II
TIME-COMPLEXITY ANALYSIS OF THE MINIMUM

CLASSIFICATION ERROR TRAINING ALGORITHM

For this analysis, we assume that , there are
classes, and each has elements In addition, it is easy to
prove that once the sorting is done for a sample, the calcula-
tion of the Choquet integral can be done in linear time for the
Sugeno -measure. Then, calculating the Choquet integral with
respect to the Sugeno -measure has asymptotic complexity

[35]. In addition, calculating the roots for (2)
has asymptotic complexity [35], [36].

We present the pseudocode of the general algorithm with the
order of operations of the computational complexity steps in
parentheses:

General MCE Algorithm

• Set learning rate

• for to

– Sort all the samples of class

• endfor

• Do

– for to

* Set

* Calculate for each class

* Calculate for each density the partial derivative

* for to
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1) Calculate

2) Calculate

3) Calculate for all

4) Calculate for all the partial
derivative of with respect for all

5) Calculate the partial derivative with

respect to for all

6) Calculate for each density
the quantity

.

7) For each , set

8)

* endfor

– endfor

• while

First, define to be the total number of samples.
Now, the time complexity for a single iteration is

Time complexity of sorting
all the samples
Time complexity of calculating

Time complexity of calculating

Time complexity of calculating
all dissimilarity functions

Time complexity of calculating
all loss functions
Time complexity of calculating
all measures
Time complexity of calculating
all partial derivatives of
Time complexity of calculating
all partial derivatives of
Time complexity of calculating
all
Time complexity of updating
all
Time complexity for updating
all

We can rewrite this time complexity as

(A-16)

Thus, we have that the time complexity for a single iteration in
the MCE is
Time complexity for MCE single iteration

(A-17)

Then, assuming iterations in the main while loop, we obtain
the time complexity for the MCE
Time complexity for MCE

(A-18)
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Abstract—A variety of algorithms for the detection of landmines
and discrimination between landmines and clutter objects have
been presented. We discuss four quite different approaches in us-
ing data collected by a vehicle-mounted ground-penetrating radar
sensor to detect landmines and distinguish them from clutter
objects. One uses edge features in a hidden Markov model; the
second uses geometric features in a feed-forward order-weighted
average network; the third employs spectral features as its basis;
and the fourth clusters edge histograms. We present the results of
a large-scale cross-validation evaluation that uses a diverse set of
data collected over 41 807.57 m2 of ground, including 1593 mine
encounters. Finally, we discuss the results of that ranking and
what one can conclude concerning the performance of these four
algorithms in various settings.

Index Terms—Discrimination, ground-penetrating radar
(GPR), landmine detection.

I. INTRODUCTION

G ROUND-PENETRATING radar (GPR) sensors have
been used in a variety of landmine detection systems

for quite some time [1], and various computer algorithms in
processing GPR data to detect landmines and discriminate
between landmines and nonmine clutter objects have been
employed [2]–[15]. Systematic evaluations and comparisons
of these algorithms are rare, however. Our purpose here is to
present the results of an evaluation of four different landmine
discrimination algorithms that are applied to data collected with
a vehicle-mounted radar system over 41 807.57 m2 of ground.
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A NIITEK, Inc., landmine detection system comprising a
vehicle-mounted 24-channel GPR array [16], [17] was used
to collect data from a variety of test sites. The sites include
dirt and gravel roads and lanes and contain both landmines
and clutter objects. The data collected by the NIITEK system
are used as input to each of the detection algorithms. The
NIITEK GPR collects 24 channels of data. Adjacent channels
are spaced approximately 5 cm apart in the crosstrack direction.
The downtrack interval between samples in each channel is
approximately 5 cm. The system uses a V-dipole antenna that
generates a wideband pulse ranging from 200 MHz to 7 GHz.
Each A-scan, that is, the measured waveform that is collected
in one channel at one downtrack position, contains 416 time
samples at which the GPR signal return is recorded. Each
sample corresponds to roughly 8 ps. Although we often refer
to the time index as depth, since the radar wave is traveling
through different media, this index does not represent a uniform
sampling of depth. Thus, we model an entire collection of input
data as a 3-D matrix of sample values S(x, y, z), where the
indices x, y, and z represent downtrack position, crosstrack
position, and depth, respectively.

Fig. 1 shows several B-scans (sequences of A-scans) of both
downtrack (formed from a time sequence of A-scans from
a single sensor channel) and crosstrack (formed from each
channel’s response in a single sample). The surveyed object
position is highlighted in each figure. The objects scanned are
the following: 1) a high-metal content antitank mine; 2) a low-
metal antitank mine; 3) a soft-drink can; and 4) a wood block.

II. DISCRIMINATION ALGORITHMS

Landmine detection algorithms, like many other target de-
tection algorithms, typically consist of a number of discrete
phases. Often, a prescreener is applied to reduce the volume of
data to be inspected by later phases. The prescreener identifies
distinct alarms (points of interest) in the data. Features are
then extracted from the data corresponding to the alarms. Then,
these features are presented to an algorithm that discriminates
between landmines and nonmine objects (false alarms). We
are concerned here in evaluating the utility of discrimination
algorithms.

Various algorithms have been applied to the problem of dis-
crimination between landmines and false alarms. In this paper,
we consider four specific algorithms of distinct character. The

0196-2892/$25.00 © 2007 IEEE
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Fig. 1. NIITEK Radar downtrack and crosstrack B-scans pairs. (a) Metal mine. (b) Low-metal mine. (c) Soft-drink can. (d) Wood block.

first employs a hidden Markov model (HMM) that models the
time-varying behavior of GPR signals encoded using edge di-
rection information to compute the likelihood that a sequence of
measurements is consistent with a buried landmine. The second
extracts geometric features of the GPR data associated with a
ground location and applies a feed-forward order-weighted av-
erage (FOWA) network to discriminate between landmines and
clutter. The third algorithm extracts features from the frequency
spectrum of the GPR data associated with a ground location
and formulates a confidence value based on similarity to a
collection of features that characterize mine objects. The final
algorithm extracts edge histograms capturing the frequency of
occurrence of edge orientations in the data associated with
a ground position and then uses a fuzzy K-nearest neighbor
(K-NN) algorithm to generate a mine confidence level.

Rather than processing each of the many discrete locations
sampled by the GPR array, our algorithms restrict their process-
ing to alarm locations identified by a prescreener algorithm.
The prescreener can be thought of as a conservative detection
algorithm, that is, one designed to provide a high probability
of landmine detection at the expense of inclusion of many
false alarms. False alarms arise as a result of radar signals that
present a minelike character. Such signals are generally said
to be a result of clutter. In this evaluation, clutter arises from
two different processes. One type of clutter is emplaced and
surveyed in an effort to test the robustness of the algorithms.
Other clutter is a result of either human activity unrelated to
the data collection or natural processes. We refer to this second
kind of clutter as nonemplaced. Nonemplaced clutter includes
objects discarded or lost by humans, soil inconsistencies and
voids (due to formation processes, erosion, or excavation),
stones, roots, and other vegetation, as well as remnants of
animal activity. It is the job of the subsequent algorithms to
discriminate between those prescreener alarms corresponding
to landmines and those corresponding to clutter. All algorithms
considered here were applied to data that were prescreened

using the Duke University NUKEv6 prescreener, a variant of
the least mean square prescreener [18], [19]. A version of
this algorithm (F1) has been implemented in real time in a
uniprocessor system. The prescreener detected 1560 of 1593
mines encountered in the data, yielding a 97.9% probability
of detection. It rejected 161 of 211 emplaced clutter objects
encountered. It yielded a total of 3435 false alarms that are
associated with nonemplaced clutter objects.

A. HMM Algorithm

The NIITEK GPR system produces sequences of observation
vectors that can be considered as functions of uniform time (and
space if the vehicle velocity is constant). Signals arising from
the presence of buried landmines can be used to develop an
HMM that captures the probabilities that sequences of these
signals were produced by landmines and to infer the location
of possible landmines. We modified the work of Frigui et al.
[25] to give us an HMM suitable for use with the NIITEK
GPR data.

HMMs are stochastic models for complex processes that
produce time sequences of random observations as a function
of states. They have been successfully applied to the problems
of speech and handwriting recognition [20]–[22]. An HMM
produces a sequence of random observation vectors at discrete
times according to an underlying Markov chain. At each obser-
vation time, the Markov chain may be in one of N states, and
given that the chain is in a certain state, there are probabilities
of moving to other states. These probabilities are called the
transition probabilities.

The model is said to be hidden because the states are not
directly observable. Given an observation vector at time t, and
a state S, there is a probability that the chain is in state S. The
actual state is described by a probability density function, which
can either be continuous or discrete. The probability density
functions describing the states define the probabilities of the
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observations conditioned upon the chain being in the associated
state. Thus, the HMM is characterized by three sets of prob-
ability density functions: the transition probabilities, the state
probability density functions, and the initial probabilities. In the
case of the discrete HMM, the observation vectors are typically
quantized into a finite set of symbols, called the codebook. Each
state is represented by a discrete probability density function
that assigns each symbol a probability of occurring given that
the system is in a given state.

We use Rabiner’s notation [21], [22] in the brief discussion
here. The compact notation λ = (A,B, π) is used to indi-
cate the parameter set of an HMM, where A = {ai,j}, ai,j =
P (qt+1 = Sj |qt = Si) are the state transition probability dis-
tributions, B = {bj(k)}, bj(k) = P (νk at t|qt = Sj) are the
observation symbol probabilities (of encountering observation
k in state j), and π = {πi}, πi = P (q1 = Si) are the initial
state probabilities.

The three problems of interest that must be solved to employ
the model are as follows: 1) classification; 2) identifying an
optimal state sequence; and 3) estimating the model parameters.

Classification involves computing the probability of an ob-
servation sequence O = O1, O2, . . . , OT given a model λ,
P (O|λ). In the landmine detection problem, this corresponds to
finding the probability of observing a sequence of GPR signals
when the sequence is associated with a mine and λ is a landmine
model; or when the sequence is a result of clutter and λ is a
clutter model.

In applications, it often turns out that computing an optimal
state sequence is more useful than P (O|λ). There are several
possible ways of finding an optimal state sequence associated
with the given observation sequence, depending on the def-
inition of the optimal state sequence, i.e., there are several
possible optimality criteria. One that is particularly useful is to
maximize P (O,Q|λ) over all possible state sequences Q. The
Viterbi algorithm is an efficient formal technique in finding this
maximum state sequence and associated probability.

The Baum–Welch algorithm [23], [24], which is an iterative
approach to parameter estimation, was used to identify the
parameters of the model employed in this paper. The parameters
for the model employed in this paper were created using a
different radar system [25].

Our goal is to produce a scalar value indicating our confi-
dence that a buried landmine is present at any of the various
spatial positions (x, y) encountered by the vehicle-mounted
sensor. To fit into the HMM context, a sequence of observation
vectors must be produced for each point. These observation
vectors are features that encode important information about
the landmine signatures in a compact form. The downtrack
observation sequence at the point (x, y) will be the sequence of
observation vectors O(x, y − k), O(x, y − k + 1), . . . , O(x,
y − 1), O(x, y), O(x, y + 1), . . . , O(x, y + k), and the cross-
track sequence is the set of vectors O(x− k, y), O(x− k +
1, y), . . . , O(x− 1, y), O(x, y), O(x+ 1, y), . . . , O(x+ k, y).
To generate these observations, we preprocess the data to
accentuate edges in the diagonal and antidiagonal directions.
Let S(x, y, z) denote the raw 3-D GPR data. The downtrack
and crosstrack second derivatives are first estimated on the raw
data. The reason for differentiating is that it removes stationary

effects that remain relatively constant from scan to scan such as
the return from the ground and the standing pattern caused by
the interaction of the GPR with the surrounding components.
Although differentiation is sensitive to noise, the NIITEK data
are not very noisy; thus, clutter objects rather than system
noise will be more likely to yield false alarms. The features
calculated from this second-derivative images are the strengths
of diagonal and antidiagonal edges calculated from downtrack
or crosstrack B-scans.

The discrete mine model has three states as does the back-
ground model. The discrete mine model is a left-to-right model,
in that, states are ordered, and the transition probabilities in
moving to a lower numbered state are zero. The three mine
states correspond to the leading edge, center, and trailing edge
of a mine. Two optimal state sequences are computed for the
mine model. One assuming the model is in the third mine state
at the final time, and the other assuming the model is in the
background state at the final time. The state sequence with the
highest probability produces the model output x (the downtrack
response) and y (the crosstrack response). These are combined
to form the HMM score h = (αx+ (1 − α)y) +

√
xy, where

α is chosen to be 0.5 for alarms in channels 6–19, and 0.75
for channels 1–5 and 20–24. This assigns equal weight to the
individual crosstrack and downtrack responses in those chan-
nels in which most of the mine signature is expected to be
fully present in the crosstrack scans, and a higher weight to the
downtrack response in those channels near the edges of the data
volume where only a portion of the crosstrack sequence is ex-
pected to appear. Finally, the geometric mean of the combined
downtrack, crosstrack HMM response, and the prescreener con-
fidence p is used as the resulting mine confidence Conf =

√
hp.

We can summarize the HMM algorithm processing steps
as follows.

1) Estimate downtrack and crosstrack second derivative
B-scans.

2) Form observation sequences from diagonal and antidiag-
onal edge features in second derivative B-scans.

3) Find mine model probabilities x and y using downtrack
and crosstrack observation sequences, respectively.

4) Form HMM score h = (αx+ (1 − α)y) +
√
xy and

confidence Conf =
√
hp.

B. Geometric Feature FOWA ROCA Algorithm (GEOM)

The GEOM is based on a single hidden-layer FOWA network
[30], which is essentially a perceptron with a combination of
scalar and order-weighted average vector input features. The
features presented to this network are the geometric features of
the FROSAW landmine detection algorithm [27]. To improve
the algorithm’s accuracy, we employ an iterative technique that
maximizes the area under the receiver operating characteristics
(ROC) curve, which we refer to as ROCA [28].

The features employed by this algorithm are geometric fea-
tures of the GPR data. These features are captured in a depth-
bin whitened version of the GPR data. The GPR data are
segmented into a sequence of subimages that overlap in the
depth dimension. To reduce noise, decorrelate time samples,
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and reduce computational burden, principal component analysis
is used to reduce the number of elements in depth bins on a
channel-by-channel basis.

It has been consistently observed that in many of the depth
bins, the whitened energy signal for mines has a compact,
solid, and circular shape (sometimes also accompanied by outer
rings). On the other hand, whitened energy signals for nonmine-
like false alarms (i.e., those alarms having raw GPR signatures
that humans qualitatively label as nonminelike) tend to be ir-
regular. Based on these observations, the following features are
computed from the whitened energy signals for discriminating
mines and nonmines: compactness, eccentricity, solidity, area/
filled area ratio.

To gauge the compactness of a whitened energy signal, two
approaches from the FROSAW algorithm [27] are taken. Both
approaches measure the compactness centered at an alarm loca-
tion. The first approach is referred to as adaptive compactness,
whereas the second approach is referred to as fixed compact-
ness. Adaptive compactness is defined as the radius from the
centroid required for a region of that radius to contain a fixed
percentage of the energy of a relatively large radius region.
More precisely, let (xa, ya) denote the location of the alarm
under consideration and let ew(x, y, z) be the whitened energy
associated with the alarm. The whitened energy is normalized
as follows:

ẽw(x, y, z) =
ew(x, y, z) − µs

σs
(1)

where µs and σs are the mean and standard deviation over all
whitened energy values associated with the alarm. Denote the
normalized whitened energy of the nth depth bin within the disk
of radius r by

En(r;xa, ya) =
∑

(x,y)∈D(r;xa,ya)

ẽw(x, y, z)2 (2)

where D(r;xa, ya) is the disk of radius r centered at alarm
location (xa, ya). Let rmax > 1 denote a fixed radius and Ep

an energy threshold. The adaptive compactness at depth n0 at
location (xa, ya) is defined as

pn0(xa, ya)

= 1/min
{
r : 1 ≤ r ≤ rmax and

En0(r;xa, ya)
En0(rmax;xa, ya)

≥ Ep

}
.

(3)

Fixed compactness is defined as the ratio of the energy in a
5 × 5 region to the energy in a 24 × 25 region, both regions
being centered at the reported alarm location in the downtrack
direction. That is, the fixed compactness at depth n0 at location
(xa, ya) is defined as

pn0f (xa, ya) =
Einner(xa, ya)
Eouter(xa, ya)

(4)

where

Einner(xa, ya) =
xa+2∑

x=xa−2

ya+2∑
y=ya−2

ẽw(x, y, z0)2 (5)

Eouter(xa, ya) =
24∑

x=1

ya+12∑
y=ya−12

ẽw(x, y, z0)2. (6)

In general, mines have larger values of compactness than false
alarms not associated with emplaced clutter.

To compute additional features of the normalized whitened
energy signal ẽw(x, y, z), the signal is first thresholded using
Otsu’s method [29]. After thresholding, connected components
are formed. Only the connected component with gray-level
centroid closest to the reported alarm location is kept for
computing features on the zth0 depth bin. The additional features
of this component region (eccentricity, solidity, and ratio of area
to filled area) are computed as in the FROSAW algorithm [27].

The FOWA algorithm employs vectors of these depth fea-
tures by computing an order-weighted average (OWA) of them.
An OWA operator [31]–[33] F : Rn → Rn has a weight vec-
tor W = [w1, . . . , wj ] satisfying

∑n
j=1 wj = 1 and such that

F (a1, . . . , an) =
∑n

j=1 wja(j), where a(j) is the jth largest of
the ai. The input to the FOWA network comprises I feature
values, I0 of which are vector-valued and the rest having
scalar values. Each element of this geometric GPR FOWA
network is a feature calculated on a single depth bin; therefore,
for example, the solidity feature contains an entry for each
whitened energy depth-bin’s Otsu-thresholded region solidity.
Thus, inputs, αm = [αm,1, αm,2, . . . , αm,Km

]T ,m = 1, 2, . . . ,
I0, are vector-valued features, and αIo+1, αIo+2, . . . , αI have
scalar values, and the whole collection of features is z =
[αT

1 , α
T
2 , . . . , α

T
Io
, αIo+1, αIo+2, . . . , αI ]T . First, I0 OWA op-

erators are applied, one to each of the vector-valued features.
The output of this layer is a vector λm =

∑Km

k=1 wm,kαm(k),
m = 1, 2, . . . , I0. For m = Io + 1, Io + 2, . . . , I , λm = αm,
that is, these features are not sorted and weighted by the OWA
operators. With tanh sigmoid functions being employed at the
hidden and output layers, the outputs at the hidden layer and
output layer are, respectively

hl = tanh

(
β1

I∑
m=1

wh
l,mλm

)
(7)

f(z; θ) = tanh

(
β2

L∑
l=1

wz
l hl

)
(8)

where L is the number of hidden nodes, and θ is a vector with
all the weights {wm,k}, {wh

l,m}, and {wz
l } as its elements. In

our notation, z can be either xi for mines or yj for nonmines.
We initially train the FOWA network by minimizing the mse

between f(xi; θ) and the desired output for mine objects, and
the mse between f(yj ; θ) and the desired output for nonmine
objects, namely, false alarms not associated with emplaced
clutter. However, after performing this training, a second it-
erative technique optimizes an objective function that seeks
to maximize the area under the ROC curve using a steepest
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Fig. 2. Flush-buried and surface-laid mine signatures. (a) Surface metal mine. (b) Flush metal mine. (c) Surface low-metal mine. (d) Flush low-metal mine.

descent method [28]. Briefly, this technique attempts to adjust
the parameters of the objective function by considering those
mine alarms and false alarms whose confidences are within a
small distance ∆t of each other. Let C denote the collection
of indices (i, j) of pairs of mines xi and false alarms yj falling
into this category. Then, our steepest descent method adjusts the
objective function parameter wl by dwl = (s/∆t)

∑
(i,j)∈C ×

((∂f(xi; θ)/∂wl) − (∂f(yj ; θ)/∂wl)), where s is a heuris-
tically determined step size. That is, it uses the summed
weighted differences of the confidences of similarly scored
mines and false alarms to increase their difference. The
confidence reported is the output of the network evaluated with
adjusted parameters θ, Conf = f(z; θ).

In summary, the geometric FOWA ROCA algorithm process-
ing steps are as follows.

1) Generate whitened depth-bin volumes.
2) Compute geometric features from each depth bin, gi(j)

being a feature value i at depth j.
3) Apply the FOWA ROCA network f to the geometric

features z = (g1, . . . ,gn) using training set parameters
θ to yield Conf = f(z; θ).

C. Spectral Confidence Feature Algorithm

In contrast to the geometric features and the edge histogram
features, the spectral confidence feature algorithm (SCF) aims
at capturing characteristics of a target in the frequency do-
main. The spectral feature is derived from the energy den-
sity spectrum (EDS) of an alarm declared by the prescreener.
The estimation of EDS involves four steps: 1) preprocessing;
2) nonlinear smoothing; 3) whitening; and 4) averaging.

Preprocessing estimates the ground level, aligns the data
from each scan with respect to the ground level, and applies
range gating to remove the data above and near the ground
surface. Subpixel alignment with a step of 0.25 pixels is applied
to obtain better alignment, and the range gating removes the
data from the start until 20 depth pixels below the ground

level. Range gating is necessary; otherwise, the EDS will be
dominated by the response resulted from the ground bounce.
Fig. 2. shows b-scans of both flush-buried and surface-laid
metal and plastic mines. The presence of signal associated with
pixels more than 20 samples (0.16 ns) below the initial ground
bounce provides the opportunity to identify these mines after
range gating.

The whitening step performs equalization on the spectrum
from the background so that the estimated EDS reflects the
actual spectral characteristics of an alarm. Let D(x, y, kz) be
the Fourier transform of the data along depth at the position
(x, y), where kz denotes the frequency index. The mean and
the standard deviation of the background are estimated at each
crosstrack and each frequency index from the past downtrack
samples as

m(x, kz) =
1
L


 yo−G−1∑

i=yo−G−L

D(x, i, kz)




σ(x, kz) =

√√√√√ 1
L


 yo−G−1∑

i=yo−G−L

|D(x, i, kz)|2

− |m(x, kz)|2

(9)

where (xo, yo) is the alarm location declared by the prescreener,
G = 6 is the number of guard samples that avoid the use of
target samples, and L = 58 is the number of samples that
estimate the background statistics. The spectral whitening is
achieved by the normalization

D̃(x, y, kz) =
(
D(x, y, kz) −m(x, kz)

σ(x, kz)

)
,

y = yo −G, yo −G+ 1, . . . , yo +G. (10)

Note that D̃(x, y, kz) is complex. The mean and root-mean-
square (rms) value of the magnitude |D̃(x, y, kz)| are next
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Fig. 3. EDS of two low-metal differing antitank mines.

Fig. 4. EDS of two different types of clutter targets (a) metal debris and
(b) plastic clutter.

computed over y = yo −G, yo −G+ 1, . . . , yo +G. Size-
contrast processing by subtracting the mean and setting to
zero the values less than the rms value is applied, resulting in
U(x, y, kz).

Averaging reduces the variance in the EDS by forming

P (xo, yo, kz) =
1
N2

xo+(N−1)/2∑
x=xo−(N−1)/2

yo+(N−1)/2∑
y=yo−(N−1)/2

U(x, y, kz)

(11)

where the averaging is over 25 cm downtrack and 25 cm
crosstrack, which corresponds to N = 5. P (xo, yo, kz) is the
EDS estimate to be used in extracting the spectral features.

Fig. 3 depicts the EDS of two low-metal antitank mine targets
of different types, and Fig. 4 shows the EDS of a metal object
(a 5 × 5 cm spool of resin-core solder) and a plastic clutter
(a 12-cm diameter container lid together with an 8-cm container

lid). The EDS produced by these mines and clutter objects
are obviously different, motivating the use of this feature for
discrimination. We must point out that, although this difference
we have observed in EDS between mines and clutter is present
for a wide variety of objects, there are many clutter object
signals whose EDS is quite similar to that of the mines shown.
Likewise, there are mine signals whose EDS do not so closely
resemble those shown in Fig. 3.

The spectral peaks from mine targets could vary between 1.2
and 2 GHz. Subbanding using a cosine square window with
50% overlap is applied, where each subband is 600 MHz. The
spectral energy in each subband is computed by summing the
EDS values within the subband, resulting in ten values, denoted
by a column vector Q, over a 6-GHz range. Based on the
matched filtering approach, we then calculate the dot product
between Q and seven spectral masks that are derived through
training from mine targets. Let W be the spectral mask that
gives the largest dot product. The spectral feature value used
in this paper is Conf = (log(WT Q + 1) + k)(p− pmin). This
confidence value geometrically combines the spectral confi-
dence with prescreener confidence p. The log operation reduces
the dynamic range of the spectral confidence value, k = 1.5
is used to let the prescreener confidence dominate when the
spectral confidence is low, and pmin, the prescreener threshold
value, is subtracted to make the prescreener confidence value
be zero-based.

We can summarize the spectral feature algorithm as follows.
1) Perform ground alignment and range gating.
2) Set D(x, y, kz) to the Fourier transform along depth of

the data volume.
3) Whiten D based on background samples.
4) Perform size contrast processing on D yielding
U(x, y, kz).

5) Find the mean depth vector value of U in a 25 × 25 cm
neighborhood.

6) Sum U within ten frequency bands to form Q.
7) Find Conf = (log(WT Q + 1) + k)(p− pmin) using the

best matching spectral vector W from a set formed
during training.

D. Edge Histogram Discrimination Algorithm

The edge histogram discrimination algorithm [34] uses edge
histogram descriptor (EHD) features and employs a rule based
on fuzzy K-NNs to assign confidence. A set of alarms with
known ground truth is used to train the decision-making
process. These labeled alarms are clustered to identify a small
number of representatives that capture signature variations due
to differing soil conditions, mine types, weather conditions, and
so forth. Fuzzy memberships are assigned to these prototypes
to capture their degree of similarity to mine and clutter class
objects.

The MPEG-7 EHD [35] is used as a feature representation
for GPR alarm signatures. The EHD is a mature technique to
represent the frequency and the direction of intensity changes
appearing within an image. Edges detected within an image are
grouped by the EHD into five categories: vertical, horizontal,
diagonal (45◦ rising), antidiagonal (45◦ falling), and isotropic
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(unoriented). The EHD contains five histogram bins counting
the number of locations at which each of these edge characteri-
zations dominates the others.

To apply EHD to 3-D GPR data, it is modified to com-
pute two distinct types of 2-D edges, namely, those edges in
both downtrack and crosstrack B-scans of the radar data. Let
S

(x)
z,y denote the xth plane of the 3-D signature S(x, y, z).

For each S(x)
z,y , we compute four categories of edge strengths:

vertical, horizontal, diagonal, and antidiagonal. If the edge
strength in a given direction exceeds threshold θG, then the
corresponding pixel is considered to be an edge pixel in that
direction. Otherwise, it is considered to be an isotropic pixel.
We consider images of fixed size at each alarm location (x, y),
spanning S(x′)

z,yi for x′ ∈ {x− δ, x+ δ} and divide these sub-

images into four horizontally overlapping subimages S(x′)
z,y for

i = {1, . . . , 4}. We compute a five-bin edge histogram Hx
zyi

with bins corresponding to the number of occurrences of each
of the assignments of edge to the pixels in subimage S(x′)

z,yi .
Finally, we construct the downtrack component of the EHD,
EHDd, which is defined to be the concatenation of the seven
five-bin histograms

EHDd(Sxyz) = [Hzy1Hzy2Hzy3Hzy4Hzy6Hzy6Hzy7 ] (12)

where Hzyi
= (1/NC)

∑NC

x=1H
(x)
zyi .

To compute the crosstrack EHD component EHDx, we com-
pute four edge strengths on the S(y)

zx , y = 1, . . . , NS planes.
Since there are typically fewer crosstrack samples than down-
track samples, we do not divide the crosstrack into subimages.
Thus, only one global histogram Hy

zx is computed. Otherwise,
EHDx is computed similarly to EHDd

EHDx =
1
NS

NS∑
x=1

H(y)
zx . (13)

Finally, the composite EHD feature vector is computed as a
40-D histogram that concatenates the downtrack and crosstrack
EHD components

EHD(Sxyz) =
[
EHDx(Sxyz)EHDd(Sxyz)

]
. (14)

A set of labeled alarms with known x, y positions is used
as training data. Alarm depths are visually estimated, since the
actual depth of a mine or the phenomenon yielding a false
alarm cannot be determined by an automated prescreener. Each
signature S is a volume cube containing 30 depths, 4 scans, and
7 channels centered at Sx,y,z , where z is the estimated alarm
depth. The training data include signatures of mine alarms and
signatures of false alarms not associated with emplaced clutter.

One expects signatures of objects within any given class to
exhibit significant variation. Clutter signatures, in particular,
may arise from a large number of different types of objects.
Mine signatures, as well, may have multiple subclasses corre-
sponding to mines of different types and sizes, buried at differ-
ent depths, appearing in varying soil and weather conditions,
and so forth. Two self-organizing feature maps (one for mines
and one for clutter) are used to cluster the alarms. We refer
to cluster representatives as prototypes and denote the mine

signature prototypes as RM
i and the clutter signature proto-

types as RC
i .

Each prototype Ri is assigned a fuzzy membership in each
of the class of mines uM (Ri) and the class of clutter uC(Ri).
We use minimum distance and the Fuzzy C-Means membership
function [36] to label new alarms. In particular, for each Ri,
we find the closest mine prototype RM

i and the closet clutter
prototype RC

i , and assign a label using

uM (Ri) =
1/dist

(
Ri, R

M
i

)
1/dist

(
Ri, RM

i

)
+ 1/dist

(
Ri, RC

i

) . (15)

Each prescreener alarm is tested at multiple depths by sliding
the 30 × 4 × 7 EHD window along the depth axis with
50% overlap. At most, ten signatures are extracted for each
alarm. The EHD is extracted, and a fuzzy K-NN-based rule
is used to assign a confidence value. First, given a test signa-
ture ST , we compute its distance to all representative proto-
types. We then sort these distances and identify the K nearest
neighbors S1

T , . . . , S
K
T . Letting p represent the prescreener

confidence value, the EHD confidence value is computed
as follows:

Conf(ST ) =


pΣK

k=1u
M
(
Sk

T

)
× 1

dist(ST ,Sk
T )

ΣK
k=11/dist

(
ST , Sk

T

)



1/2

. (16)

In summary, one can find the EHD confidence as follows.

1) Calculate edge strengths within the downtrack and
crosstrack B-scans.

2) Form edge histogram features in crosstrack and overlap-
ping downtrack subimages.

3) Find theK nearest prototype features.
4) Calculate confidence Conf(ST ) from the test signature’s

features and theK nearest prototype features as described
above.

III. DATASET STATISTICS

The dataset contains data collected between November 2002
and July 2006 from four geographically distinct test sites. Sites
A, B, and D are temperate climate test facilities with prepared
soil and gravel lanes. Site C is an arid climate test facility
with prepared soil lanes. The statistics of the data are shown
in Table I. Site B has the largest number of collections and the
largest number of alarms. The data collected from Sites B and D
have emplaced buried clutter. Although the lanes at Sites A, B,
and C were prepared in an attempt to eliminate the presence of
minelike objects, they still contain nonemplaced clutter objects.
Both metal and nonmetal nonemplaced clutter objects that
yielded high mine confidence values such as ploughshares, shell
casings, and large rocks were excavated from these sites to
determine their nature after the data were collected and their
locations had been identified. The emplaced clutter objects
include steel scraps, bolts, sort-drink cans, concrete blocks,
plastic bottles, wood blocks, and rocks. In all, there are 12
collections having 19 distinct mine types. Many of these mine
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TABLE I
STATISTICS OF THE DATASET

TABLE II
DISTRIBUTION OF MINE TARGETS AT DIFFERENT DEPTHS

types are present at several sites. The data include 1560 mine
encounters in a sample ground area of 41 807.57/m2.

The distribution of mine targets at different depths is shown
in Table II. The targets were buried up to 15.2 cm deep. There
were nine distinct types of low-metal antitank mines (ATLMs),
56 high-metal antitank mines (ATMs), and 34 simulants, or
simulated mines (SIM).

Fig. 5 shows a histogram of the distribution of mine depths.
The mines buried at 2.5–15.2 cm occupy 87.5% of the to-
tal targets encountered versus 12.5% surface-laid or flush-
buried mines.

IV. EVALUATION

Each of the four algorithms (HMM, GEOM, SCF, and
EHD) was implemented for use with the Testing/training
Unified Framework system. This system supports creation of
supervised learning algorithms that perform discrimination be-
tween targets and nontargets in data collected at a variety of
different regions (mine lanes) in a variety of different sites. The
framework employs algorithms implemented in Matlab using a
control flow that incorporates a user-programmed prescreener
that processes raw data files into alarms with associated Uni-
versal Transverse Mercator coordinates and confidence values.
The alarms are then processed by extracting signatures. These
signatures are passed to a user-specified feature extractor. The
features resulting from the feature extractor are presented along
with the alarms to a discrimination algorithm, which produces
a confidence for each alarm. The system performs n-way
cross-validation testing using either lane-based cross-validation

Fig. 5. Distribution of mines at different depths.

(in which each mine lane is, in turn, treated as a test set with
the rest of the lanes used for training) or site-based cross-
validation (in which each data collection site is treated, in
turn, as a test set). The results of this process are scored
using the MIne Detection Assessment and Scoring (MIDAS)
system developed by Ayers and Rosen of the Institute for
Defense Analysis [37]. The GEOM and EHD algorithms are
trained in this cross-validation manner. The HMM was based
on a model trained using a different radar system [25], and
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the SCF employs a single static mine model and is not
trained.

Straightforward Matlab implementation of the HMM algo-
rithm requires about five times as much processing time per
alarm as does EHD. SCF and FOWA run about eight times as
long as the HMM. An efficient C-language implementation of
EHD processes a single alarm in 12 ms. Thus, all the algorithms
are potentially suited to real-time use.

Various authors have attempted to develop criteria in using
ROC curves to compare the performance of algorithms [38],
[39]. The work of Ling and Zhang [40] shows that given
a constrained environment (in which the number of targets
and nontargets is equal) and for a narrowly defined accuracy
criterion (best discrimination at median threshold), that maxi-
mizing the area under the ROC curve corresponds to increasing
accuracy. Provost et al. [41], however, argue convincingly that
accuracy is not necessarily the best single metric to rank al-
gorithm performance, particularly when comparing ROCs. It is
often the case that a single dominating classifier [one producing
statistically lower false alarm rate (FAR) at every probability
of detection (PD) value] does not exist. Furthermore, in many
practical cases such as humanitarian demining, the best algo-
rithm may be the one at which 100% detection is achieved with
the lowest false alarm rate, no matter what other properties
the ROC may display. For other time-critical demining appli-
cations where some level of missed mines is not considered
as great a cost, the best ROC may be the one at which the
probability of detection is highest at a given constant false
alarm rate.

Our algorithm development efforts have been geared toward
developing algorithms suitable for an autonomous vehicle-
based mine detection system. In any such system, false alarms
will delay the progress of the system. To achieve a reasonable
rate of progress, we have set an initial goal of reporting fewer
than 0.0007 false alarms per square meter at a detection rate of
90%. Our long-term goal is to achieve a false alarm rate below
0.00007/m2 at a detection rate of 95%. Knowing, however,
that any single property of the ROC may be inappropriate in
evaluating the algorithms, we have chosen to consider a number
of measurable properties of these ROCs. The metrics chosen for
algorithm evaluation are the following:

1) PD85: FAR at the threshold yielding PD.85;
2) PD90: FAR at PD.90 threshold;
3) PD95: FAR at PD.95 threshold;
4) FAR0: PD at FAR 0 threshold;
5) FAR0.007: PD at FAR 0.0007 threshold;
6) FAR0.00007: PAD at FAR 0.00007 threshold;
7) SEPAR: Separation of the mine and nonmine confidence

distributions, (µ1 − µ2)2/(σ2
1 − σ2

2), where (µ1, σ1) are
the mean and standard deviation of the mine distribution,
and (µ2, σ2) are the mean and standard deviation of the
nonmine distribution.

Figs. 6–10 show the ROCs associated with each algorithm at
each site and the combined ROC for all sites. Table III shows
the ranking of each algorithm by metric at each site. Table IV
shows the highest ranking algorithm by metric at each site.

Fig. 6. Algorithm ROCs for Site A.

Fig. 7. Algorithm ROCs for Site B.

V. ANALYSIS AND CONCLUSION

Our goal was to evaluate a collection of landmine discrimi-
nation algorithms to determine their suitability for use in an au-
tomated detection system in a variety of different locations. We
carried out an evaluation using a large set of data collected over
an extended period of time in vastly different soil and weather
conditions. The evaluation used a cross-validation experiment
to create ROC curves and then compared a variety of properties
of those ROC curves.

Our evaluation showed that the two edge-based algorithms,
EHD and HMM, provided the best overall performance in
the range of detection probabilities of interest on our entire
multisite data collection. At a 90% probability of detection,
the false alarm rate of GEOM (0.00458) is roughly double
that of HMM (0.00232). The EHD algorithm was somewhat
more consistent in achieving high rankings with respect to our
evaluation criteria; however, the performance of the algorithms
varied from site to site. In particular, the EHD algorithm
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Fig. 8. Algorithm ROCs for Site C.

Fig. 9. Algorithm ROCs for Site D.

outperformed the HMM at PD.90 at Site B, while HMM
performed better at Site D. In Fig. 7, we see that at Site
B, the HMM algorithm has a larger number of false alarms
from lower PDs than EHD. At this site, a single false alarm
will account for 6.39e − 5 FA/m2. Thus, the difference of
0.00118 FA/m2 between HMM and EHD at PD 90% is a result
of about 18 false alarm occurrences. Fig. 11 shows one of the
high confidence false alarms encountered by the HMM. Only a
few weeks before the data shown in the figure were captured,
some mines had been removed from Site B, and others had been
newly laid. The soil was somewhat moist when this collection
was taken. The alarm shown in Fig. 11 is reported at a location
corresponding to the position of a mine that had been removed
and its hole recently filled. Our conjecture is the moisture
gradient between the hole and the surrounding earth accounts
for this radar signature. Investigation showed that 16 of the
30 highest confidence HMM false alarms were refilled holes.

Fig. 10. Algorithm ROCs for all sites.

The EHD algorithm assigned these alarms much lower relative
confidence than the HMM. These signatures display an edge
feature sequence consistent with a buried minelike object, yet
their edge histograms cluster more closely with less minelike
objects.

Looking at the performance of these algorithms at Site D, we
see another story. At Site D, a single false alarm corresponds
to 1.368e − 4 FA/m2. Thus, the HMM algorithm has about
11 fewer false alarms than EHD at PD 85% (a difference of
0.00155 FA/m2) and 20 fewer at PD 90% (0.00269 FA/m2).
In this case, it appears that the difference is a number of
radar signatures in which a strong nonhyperbolic edge pattern
appears, but in a sequence that is not consistent with buried
minelike objects. Fig. 12 shows such an alarm in which the raw
GPR signature shows a variety of edges associated with clutter,
whereas the second derivative images do not show the typical
hyperbolic shape we would normally associate with a buried
minelike object.

Finally, the performance of both the spectral and geometric
algorithms is superior at Site C than either of the HMM or
EHD. In this arid soil, we see a number of mines that have ex-
tremely compact signatures displaying neither a preponderance
of edges, nor clear hyperbolic features. Fig. 13 shows a typical
alarm of this type. This low-metal antitank mine displays few
edges in the raw GPR signal and lacks the long hyperbola
tails we might normally expect to see in the second derivative
images. In this case, the 0.00148-FA/m2 difference between the
edge algorithms and spectral/geometric algorithms at 85% PD
is due to six alarms, and the 0.00124 FA/m difference is a result
of five alarms at 90% PD.

These observations suggest the possibility that fusion of the
algorithms results could yield a discriminator whose perfor-
mance dominates all four of these algorithms.

Improvement in false alarm rates beyond the levels we have
reached is difficult. Looking at the result on all sites, the best
algorithm at 90% PD is the HMM. Its FAR of 0.00232 FA/m2

represents 97 alarms. To achieve the goal of 0.0007 FA/m2, we
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TABLE III
RANKINGS OF ALGORITHM ROCs BY METRIC ON ALL SITES COLLECTION

TABLE IV
HIGHEST RANKING ALGORITHM BY METRIC AT EACH SITE

Fig. 11. B-scans of HMM high confidence false alarm at Site B. (Left) Raw
GPR signature and (right) its second derivatives.

would need to reduce this to 29. There is a reason to believe,
however, that such a goal may be achievable. If we present an
oracle with the rank of each alarm in each algorithm in order
of increasing confidence and then let it choose the highest
assigned rank for each mine alarm and the lowest rank for
each false alarm, then the ROC associated with this algorithm
(shown in Fig. 14) has a false alarm rate of 0.00054 FA/m2 at
PD 90%, surpassing our goal of 0.0007. We must emphasize
that such an oracle algorithm only places an upper bound on
the performance of any fusion method that would use alarm
ranks—because it exploits knowledge of the truth, it is not an
effective algorithm. The oracle does show, however, that it is
theoretically possible to fuse just the decision statistics yielded

Fig. 12. B-scans of EHD high confidence false alarm at Site D. (Left) Raw
GPR signature and (right) its second derivatives.

by these algorithms, to achieve our performance goal. Our
current work is oriented toward evaluating fusion algorithms
for just this purpose.
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Fig. 13. B-scans of low-metal antitank mine at arid Site C. (Left) Raw GPR
signature and (right) its second derivatives.

Fig. 14. Relative performance of oracle rank algorithm on all sites.
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Use of the Borda Count for Landmine Discriminator Fusion 
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ABSTRACT 

The Borda Count was proposed as a method of ranking candidates by combining the rankings assigned by multiple 
voters.  It has been studied extensively in the context of its original use in political elections and social choice-making.  
It has recently seen use in machine learning and in ranking web searches, but few of its formal properties have been 
extensively investigated.  In this paper, we describe unsupervised, and (barely) supervised learning systems that employ 
the Borda Count as their underlying bases.  We analyze the strengths and weaknesses of the technique in the context of 
landmine discrimination.  We discuss and evaluate methods for algorithm fusion using several weighted Borda Count 
approaches and show how they affect algorithm fusion performance. 

 

Keywords: Borda Count, Landmine discrimination, fusion, unsupervised learning. 

1. INTRODUCTION 

This paper is concerned with combining the results of multiple algorithms for discriminating between landmines and 
other objects in data produced by a variety of sensors. Each discrimination algorithm is assumed to be a function of 
some spatially indexed data together with a value identifying a location of interest. The discriminator returns a scalar 
value denoting the confidence that the identified object is a landmine, greater values indicating greater confidence and 
lesser values indicating lesser confidence. 

The current study was motivated by an observation of Michael May1. In analyzing the landmine discrimination 
capabilities of 20 different algorithms operating on data from a field test of two different sensor platforms with at total 
of four different sensors, he calculated the sum of the ranks (by object) of the landmine confidence assigned to each 
object. It was noted that if one used this ranking as a discriminator, it yielded perfect discrimination results, that is, the 
landmines all had rank sums higher than the rank sums of any nonmine object. It was not immediately clear that this 
result could form the basis for a reasonable landmine discrimination algorithm, because it depended upon having four 
different sensors and the confidence results of twenty different detectors on the entirety of the data from a minefield. 

Our goal in this work is to investigate the possibility of developing both supervised and semi-supervised rank-based 
algorithms for discriminator fusion. In this setting, we wish to use information about the ranks of various alarms in a 
training data set to be able to map a collection of discriminator mine confidence values into a fused mine confidence 
value. 

2. PREVIOUS WORK 

On June 16, 1770, J.C. de Borda presented a new method of election to the French Royal Academy of Sciences1. His 
method involved having each voter rank all the candidates in an election. These ranks would be combined by summing, 
and the candidate with the best rank sum would be the winner.  Soon after, the Marquis de Condorcet presented an 
alternate method of using pairwise comparisons to generate ranked election results. Black, Arrow, and others have 
analyzed the Borda, Condorcet, and other such methods for making communal ranking decisions. Each such ranking 
process involves a set of candidates and set of voters.  The voters supply a schedule indicating their rankings (either 
total or pairwise) of the candidates. The following possible conditions of decision making processes based on such 
schedules were enumerated by Arrow: 

i. Pairwise Comparison. The ranking procedure makes choices between candidates in a pairwise fashion. 
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ii. Monotonicity. If given a set of schedules yields a ranking of candidate x above y, then replacing this set of 
schedules with one that preserves the ordering of x and y shall yield a ranking of candidate x above y. 

iii. Unanimity. If in a set of schedules, x ranks above y in all schedules, x shall be ranked above y. 

iv. Non-labeling of voters. Interchanging the schedules of two voters shall not affect the ranking outcome. 

v. Non-labeling of candidates. Interchanging both the labels and ranks of two candidates on each schedule shall 
not affect the ranking outcome. 

Arrow’s impossibility theorem shows that for any procedure that satisfies all of these conditions, where there are more 
than 3 candidates or voters, there is at least one set of schedules that gives rise to an intransitive ranking, that is, there 
exist some candidates x, y, and z such that ( ) ( )yrxr ≥  and ( ) ( )zryr ≥ , yet ( ) ( )zrxr < . The Condorcet election method, 
which satisfies Arrow’s conditions, fails in this regard. The Borda count fails to satisfy Arrow’s first (pairwise 
comparison) condition, but it does yield a transitive ranking result. A weighted Borda count (in which each elector’s 
rank is multiplied by a scalar weight before summing the ranks) fails to match condition iii, however, in our setting 
social justice is not a concern, so this condition may be discarded. A weighting of voters is termed a static weighting. 
Likewise, condition iv can be abridged if we can determine a way in which we generate a better final confidence rank 
by associating different weights with different candidates. A scheme in which candidate weights may vary is termed 
dynamic. 

The Borda count has been used for fusing the results of classifiers for the task of handwriting recognition.6,7,8 In this 
setting, there are C classifiers and N classes.  The classes correspond to words in a lexicon. Each classifier assigns a 
ranking of classes (possibly partial) to each object (a handwritten word). Ho, et al., present a weighted Borda count 
technique for this application that uses logistic regression to identify classifier weights by comparing the ranking results 
of each classifier with a best ranking derived by applying several different independent classification algorithms. Gader, 
et al., employ a method in which the Borda weights are determined dynamically based on a match confidence between 
the object and a lexicon string. Van Erp and Schomaker compare the performance of the Borda count, a variant of the 
Borda count, in which the median rank (rather than sum or average) is used, and Nanson’s election procedure (an 
iterative Borda scheme that deletes the candidate ranked lowest in each successive iteration). 

None of these applications of the Borda count to handwriting can be applied to our fusion problem. In the handwriting 
case, the number of classes is large (the size of the lexicon), yet in our case the number of classes is two (mine or 
nonmine). Rather than generate a ranking of these two classes (in effect a decision procedure), we wish to develop a 
class membership confidence value for a distinguished class. Ho’s use of logistic regression relies on the ability to 
associate a best ranking with a set of training instances. Although it may be possible to identify such a ranking for the 
class membership of handwritten words, it is not possible to identify. a-priori, a best ranking of a set of objects all 
belonging to the same class (mine or nonmine). Similarly, there is no corollary to Gader’s object/lexicon string match in 
associating a rank confidence. Van Erp and Schomaker’s use of the median Borda count suggests to us the possibility of 
using any of a number of order-weighted averaging operators10 for static weightings but they provide no insight into 
how to select such a weighting scheme. The use of Nanson’s procedure, however, is inappropriate for our task because, 
unlike normal election rankings, low confidence rankings for discrimination are no less important than high confidence 
rankings, thus we must not eliminate any candidates (either low or high) in performing our fusion. 

3. GENERAL APPROACH 

Our general approach to implementing discriminator fusion with a supervised learning system using rank weightings is 
to consider each discrimination algorithm to be a voter, and each alarm in the training set to be a candidate. We are 
given algorithms Mαα ,...,1  and training set sample alarm candidate objects Noo ,...,1 .  Each algorithm maps alarms to 

their confidence values, elements of R.  Algorithm i assigns rank ( )iji cr  to candidate j if ( )jiij oc α=  has a confidence 

value greater than exactly ( ) 1−iji cr  other candidate alarms. Thus, ri is a map from the confidence values assigned by 

algorithm iα  into the set { }N,...,1 . We can extend ir  to apply to a new candidate  *o   with ( )** oc ii α=   by defining 
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adopting the convention that the maximum of the empty set is 0. Thus, ( )*icr
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We can now define the result of applying the (unweighted) Borda count to alarm with confidence  by  
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Note that we normalize this result to yield a value in the range [0,1]. Although the algorithms may employ a-priori 
information about the training set in order to generate their confidences, the unweighted Borda fusion function B makes 
no use of such information. In order to determine a discriminant value, however, one must reasonably take some a-
priori information into account.  Since the confidences are generated by B in an unsupervised manner, a new alarm can 
be accreted to the training set by adjusting each of the rank function as follows: 
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4. SAMPLE APPLICATION 

Data was collected over a grid of 220 1 meter square cells using a robot-vehicle mounted GPR sensor array and multiple 
passes of a single wideband metal detector. Each cell contained either a buried mine, a buried clutter object, or no 
buried object. Of these cells, data from 216 could be processed by all discrimination algorithms employed. Altogether, 
the collection contained 112 mine encounters, 64 clutter object encounters, and 40 blank cell encounters. The mines 
included a variety of antitank and antipersonnel mines buried at depths from 0 (flush buried) to 12.25 cm. 

We processed the data with three different algorithms, one employing data from the wideband metal detector, and two 
employing data from the GPR sensor. The metal detector algorithm, MD, finds the parameters of the best fit of the data 
to a model proposed by Miller, et al.11 and employs a two-layer, feed-forward network trained to discriminate between 
landmines and clutter. One of the GPR-based algorithms employs a hidden Markov model12 (HMM) to discriminate 
between mines and clutter, and the other employs band-features of the frequency spectrum confidence feature (SCF) as 
its value.13 

Receiver Operating Characteristic (ROC) curves were prepared as follows. The SCF algorithm is based on a simple 
model of mine characteristics derived from another data set and is not trained, thus, it was applied to the data associated 
with each object and the ROC curve was prepared in the usual way. The HMM algorithm employs models that were 
trained on a separate data collection from a different GPR sensor, thus it was also applied to the data associated with 
each object to yield a confidence value. The MD algorithm ROC, on the other hand, was prepared based on ten-way 
cross-validation training.  The data were divided into ten test groups (each containing approximately one tenth of the 
objects). For each test group, the network was trained 50 times on the remaining data, and the average result of the 
network on the test set was used as the discriminator confidence value.  The ten test groups were then cumulated 
together to yield the ROC curve for the entire data collection. 

Figure 1 presents ROC curves yielded by application of the MD algorithm and the SCF algorithm as well was their 
unweighted Borda fusion. Figure 2 shows the unweighted Borda fusion of the SCF and HMM algorithms.(Note that the 
probability of detection axis (PD) for these graphs starts at PD 0.5.) While unweighted Borda fusion of MD and SCF 
yields improved performance (the fusion ROC dominates the other curves when comparing mines to blanks and 
dominates above PD 0.72 when applied against clutter), fusing SCF and HMM does not. On the other hand as Figure 3 
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shows, although unweighted Borda fusion of all three algorithms dominates the performance of the individual 
algorithms as a detector (against blanks), it only outperforms the MD algorithm for detection probabilities above .96 
when applied to clutter. 
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Unweighted Borda Fusion: 100/24.0 95/16.3 90/11.5 (m vs b)100/0.0 95/0.0 90/0.0
SPTL: 100/91.3 95/45.2 90/36.5 (m vs b)100/92.5 95/25.0 90/12.5

MD07: 100/60.6 95/22.1 90/13.5 (m vs b)100/50.0 95/5.0 90/2.5

 

Figure 1. Unweighted Borda fusion of SCF and MD (training run of March 7). The three ROCS show performance 
comparing mines to blanks (upper left) mines to clutter (upper right) and mines to nonmines (lower left). 
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Unweighted Borda Fusion: 100/95.2 95/45.2 90/41.3 (m vs b)100/87.5 95/10.0 90/7.5

SCF: 100/91.3 95/45.2 90/36.5 (m vs b)100/92.5 95/25.0 90/12.5

HMM: 100/85.6 95/66.3 90/42.3 (m vs b)100/67.5 95/32.5 90/7.5

 

Figure 2. Unweighted Borda fusion of  SCF and HMM. 
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Unweighted Borda: 100/35.6 95/27.9 90/15.4 (m vs b)100/2.5 95/0.0 90/0.0

SCF: 100/91.3 95/45.2 90/36.5 (m vs b)100/92.5 95/25.0 90/12.5
MD: 100/60.6 95/22.1 90/13.5 (m vs b)100/50.0 95/5.0 90/2.5

HMM: 100/85.6 95/66.3 90/42.3 (m vs b)100/67.5 95/32.5 90/7.5

 

Figure 3. Unweighted Borda Fusion of SCF, MD, and HMM. 

5. BORDA WEIGHTING SCHEMES 

In this section, we investigate a variety of schemes to associate weights with the voters in a Borda count voting scheme. 

In this setting, we define the confidence of a new alarm *o  with ( )** oc ii α=  to be ( ) ( )∑
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iw  is the weight assigned to algorithm i. We begin this investigation by looking at ways to compare the similarity of 
rankings. 

Kendall defined the rank correlation coefficient15, τ, which is a measure of the similarity of two rankings. This 
coefficient can be defined on two rankings r and s of objects as follows: 
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Thus τ  is the normalized sum of the number of agreements in ordering of pairs of items minus the number of 
disagreements in pairs of orderings. The value of τ varies between -1 (for exactly opposite rankings) and 1 (for identical 
rankings). 

Kendall also defined the coefficient of concordance of m>1 rankings, W, defined for m rankings { }mrrR ,...,1=  of n 
objects as follows: 
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This sums the normalized deviation of the sum of the ranks of an object from the mean sum of ranks over all objects. 
These coefficients have been employed by several authors in connection with Borda rank fusion methods. Erp and 
Schomaker11 employ W to compare rankings between Borda’s algorithm, a median-weighted Borda count, and 
Nanson’s algorithm. Sculley uses τ  to evaluate the performance of several ranking algorithms including a weighted 
Borda count, by comparing the ranking yielded by the algorithm to a best ranking. As noted above, no definitive best 
ranking of discrimination confidences can be identified. However, we can define a discrimination confidence ranking to 
be accurate if a higher confidence rank is associated with each mine object than is associated with any nonmine object. 

One may well ask whether these coefficients themselves might be gainfully employed to identify Borda weightings. We 
conjecture that for a given ranking of mine and nonmine objects r, that the accurate ranking most highly correlated with 
r, namely, r ′ , is that which preserves the orderings of the mines and nonmines, but ranks all mines higher than 
nonmines.  It is reasonable to say that algorithm i is a better discriminator than algorithm j if ( ) ( )jjii rrrr ′>′ ,, ττ . Indeed, 

for the data referred to earlier, we find that these correlation coefficients are the following: 

 ( ) 952.DMMD, =′τ , 

 ( ) 829.FSCSCF, =′τ , 

 ( ) 792.MHMHMM, =′τ , 

which is not surprising because the ROC for MD dominates the ROC for SCF, and the SCF ROC dominates the HMM 
ROC until the probability of detection approaches 1. One might be tempted to use these correlation values as weights, 
however, application to our sample as shown in Figure 4 demonstrates that this may not yield a dominating ROC. 
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Tau weighted Borda: 100/33.7 95/24.0 90/15.4 (m vs b)100/2.5 95/0.0 90/0.0
SCF: 100/91.3 95/45.2 90/36.5 (m vs b)100/92.5 95/25.0 90/12.5

MD: 100/60.6 95/22.1 90/13.5 (m vs b)100/50.0 95/5.0 90/2.5
HMM: 100/85.6 95/66.3 90/42.3 (m vs b)100/67.5 95/32.5 90/7.5

 

Figure 4. Tau-weighted Borda fusion. 

One might argue that the weights associated with the different algorithms are too low, because the range of  values ofis 
from -1 to 1. On the other hand, one must consider several practical issues. There is no possibility of this process 
yielding a  τ  value of -1 because the order of mine (resp. nonmine) value pairs is not changed by the process. 
Furthermore, the worst out of order case would be a ranking in which all nonmines are ranked with confidences below 
all mines.  In such a case, one has a perfectly accurate discriminator with confidence weighting the mines lower than 
nonmines rather than higher. In fact the worst case ROC for a detector is the chance diagonal, which corresponds to an 
interleaving of mines and nonmines in the ranking. Experimental evidence indicates that ( ) 5.0, →′rrτ  as the number 

of objects ∞→n  if r has a chance diagonal ROC. Thus, we might consider using ( ) 5.0, −′rrτ  as a better algorithm 
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weight estimator. Figure 5 shows that this approach, while better than the previous τ  weighting, still does not yield a 
dominating ROC. 
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Tau-0.5 weighted Borda: 100/32.7 95/22.1 90/10.6 (m vs b)100/2.5 95/0.0 90/0.0

SCF: 100/91.3 95/45.2 90/36.5 (m vs b)100/92.5 95/25.0 90/12.5
MD: 100/60.6 95/22.1 90/13.5 (m vs b)100/50.0 95/5.0 90/2.5

HMM: 100/85.6 95/66.3 90/42.3 (m vs b)100/67.5 95/32.5 90/7.5

 

Figure 5. Borda weighted using 5.0−τ . 

One can apply the theory of gambling to the problem of assigning weights to different discriminators. A discussion of 
the relationship between information theory and gambling theory is contained in Cover and Thomas11. Consider that 
each discriminator { }Mi ,,1K∈  represents a participant in a number of contests corresponding to each alarm object 

},,1{ Nn K∈ . The payoff for a win by contestant i, that is, the number of dollars returned for a one dollar bet if 

contestant i wins, is iô . Let ib  represent the bet (fraction of wealth) wagered on contestant i satisfying 0≥ib  for all i 

and ∑
=

=
M

i
ib

1

1 . Let ip  represent the probability that contestant i will win the contest.  The doubling rate (the fraction by 

which each contest will yield a doubling of wealth) is given by 

 ( ) ∑
=

=
M

i
iii obppbW

1

ˆlog, . (1) 

It has been shown that under these conditions, the optimal (largest) doubling rate is given by 

 ( )∑
=

−=
M

i
ii pHoppW

1

ˆlog)(*  (2) 

where ( )pH  represents the entropy of p, and is given by pb =* , that is, each bet proportion ib  should match the win 

proportion ip of each contestant. 

To apply this theory appropriately, we must be able to determine the distribution p, which gives the probability that a 
discriminator will win a ranking contest with other discriminators, and this is no easy matter. One might consider 
looking at the number of objects for which each algorithms rank is the best (i.e., highest rank value for a mine and 
lowest for a nonmine) however, application of this concept in our sample data yields ROCs shown in Figure 6, and once 
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again, a dominating ROC is not found. It might be possible to better define what it means for one algorithm to win a 
ranking contest for a given alarm, however, it might be difficult to do this without appealing to the notion of a best rank 
for each item, which notion we have already rejected as described above. 
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Win% weighted Borda: 100/32.7 95/19.2 90/12.5 (m vs b)100/2.5 95/0.0 90/0.0

SCF: 100/91.3 95/45.2 90/36.5 (m vs b)100/92.5 95/25.0 90/12.5
MD: 100/60.6 95/22.1 90/13.5 (m vs b)100/50.0 95/5.0 90/2.5

HMM: 100/85.6 95/66.3 90/42.3 (m vs b)100/67.5 95/32.5 90/7.5

 

Figure 6. Borda weighted by probability of best alarm rank. 

Our final approach to this problem is to address our actual evaluation criterion, namely the ROC curve itself. Recent 
work11 has shown that the area under the ROC curve (AUC) is an unbiased estimator of discrimination accuracy and 
ROC curve area optimization is not a new concept. We can apply AUC optimization to the problem of generating Borda 
weights by exhaustively searching the weight space to find those that yield the largest AUC. We applied this approach 
to our sample data set. Figure 7 shows the ROC area as a function of the weights of SCF and HMM for one 
crossvalidation fold.  
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Figure 7. ROC Area as a function of SCF and HMM weight. 

Although only one crossvalidation fold is shown, each of the folds yields a similar curve with maximal value in a 
roughly linear region in which the sum of the SCF and HMM weights are around .3 to .35.  In the cross-validation run 
shown, the weights of the HMM ranged from 0 to .15 and the SCF weights from .2 to .3. Employing the weights 
identified by maximal AUC search yields the ROC curves of Figure 8. The AUC-weighted Borda dominates the other 
ROCs above a detection probability of about .65, and yields the lowest false alarm probability weights of any of the 
methods used above.  
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AUC weighted Borda: 100/28.8 95/10.6 90/7.7 (m vs b)100/0.0 95/0.0 90/0.0

SCF: 100/91.3 95/45.2 90/36.5 (m vs b)100/92.5 95/25.0 90/12.5
MD: 100/60.6 95/22.1 90/13.5 (m vs b)100/50.0 95/5.0 90/2.5
HMM: 100/85.6 95/66.3 90/42.3 (m vs b)100/67.5 95/32.5 90/7.5

 

Figure 8. Maximum AUC weighted Borda fusion. 

The above techniques have used static algorithm weightings to do their job, that is, each algorithm is assigned a single 
weight for all objects to be ranked. One can employ dynamic ranks that depend on some function of the object ranks or 
some other independent information derived from the object data. Figure 9 shows the results that would be achieved by 
a cross-validation oracle, one that could somehow determine for each algorithm object j, the algorithm i that yields the 
best cross-validation set rank for that object (the highest rank for a mine object and the lowest rank for a nonmine), and 
assigns weight 1 to algorithm i for that alarm and weight 0 to all other algorithms. Thus, the ROCs shown are still 
derived using cross-validation, but require an oracle to identify which algorithm works best for that alarm. The oracle’s 
performance is stellar, yielding a practically perfect ROC curve. On the other hand, using dynamic weighting could 
potentially produce very bad results. Figure 10 shows the results of consulting an oracle who lies about the disposition 
of each alarm, setting the weights to assign the worst possible algorithm’s rank. This algorithm’s poor performance 
indicates we should use caution when considering the use of dynamic weights. 

6. CONCLUSION 

We have investigated the application of the Borda count to the fusion of discriminator confidence values. We showed 
the properties of the Borda count that make it more suitable to this task than either Condorcet’s or Nance’s voting 
procedures. We briefly reviews some of the applications of the Borda count to the problem of handwriting recognition 
and identified those properties of the problem domain that differ from the problem of discriminator fusion. We 
addressed several different methods of assigning weights to discriminators based on rank correlation and gambling 
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theory and found them to yield minor improvements in discrimination capability as shown by ROC curves. We 
employed exhaustive search over the space of discriminator weightings using area under the ROC curve as our 
optimization criterion, and achieved improved ROC curves. Finally, we should how one can bound the results of 
dynamically weighted Borda fusion using oracles on the training set, and observed that though dynamic weighting 
strategies may have the potential to provide much better performance, they may be subject to dramatic failure as well. 
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Oracle Borda: 100/1.9 95/0.0 90/0.0 (m vs b)100/0.0 95/0.0 90/0.0

SCF: 100/91.3 95/45.2 90/36.5 (m vs b)100/92.5 95/25.0 90/12.5
MD: 100/60.6 95/22.1 90/13.5 (m vs b)100/50.0 95/5.0 90/2.5

HMM: 100/85.6 95/66.3 90/42.3 (m vs b)100/67.5 95/32.5 90/7.5

 

Figure 9. Oracle Borda ranking. 
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Pessimal Borda: 100/99.0 95/93.3 90/89.4 (m vs b)100/97.5 95/82.5 90/72.5

SCF: 100/91.3 95/45.2 90/36.5 (m vs b)100/92.5 95/25.0 90/12.5
MD: 100/60.6 95/22.1 90/13.5 (m vs b)100/50.0 95/5.0 90/2.5

HMM: 100/85.6 95/66.3 90/42.3 (m vs b)100/67.5 95/32.5 90/7.5

 

Figure 10. Pessimal oracle Borda ranking. 
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